Header logo is


2017


no image
Pre-Movement Contralateral EEG Low Beta Power Is Modulated with Motor Adaptation Learning

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages: 934-938, March 2017 (conference)

ei

DOI [BibTex]

2017


DOI [BibTex]


no image
Probabilistic Movement Primitives for Coordination of Multiple Human-Robot Collaborative Tasks

Maeda, G., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., Peters, J.

Autonomous Robots, 41(3):593-612, March 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Automatic detection of motion artifacts in MR images using CNNs

Meding, K., Loktyushin, A., Hirsch, M.

42nd IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages: 811-815, March 2017 (conference)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl eururol2017
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]


no image
Bioinspired tactile sensor for surface roughness discrimination

Yi, Z., Zhang, Y., Peters, J.

Sensors and Actuators A: Physical, 255, pages: 46-53, March 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Catching heuristics are optimal control policies

Belousov, B., Neumann, G., Rothkopf, C., Peters, J.

Proceedings of the Thirteenth Karniel Computational Motor Control Workshop, March 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl toc image
Pattern formation and collective effects in populations of magnetic microswimmers

Vach, P. J., (Walker) Schamel, D., Fischer, P., Fratzl, P., Faivre, D.

J. of Phys. D: Appl. Phys., 50(11):11LT03, Febuary 2017 (article)

Abstract
Self-propelled particles are one prototype of synthetic active matter used to understand complex biological processes, such as the coordination of movement in bacterial colonies or schools of fishes. Collective patterns such as clusters were observed for such systems, reproducing features of biological organization. However, one limitation of this model is that the synthetic assemblies are made of identical individuals. Here we introduce an active system based on magnetic particles at colloidal scales. We use identical but also randomly-shaped magnetic micropropellers and show that they exhibit dynamic and reversible pattern formation.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
On-chip enzymatic microbiofuel cell-powered integrated circuits

Mark, A. G., Suraniti, E., Roche, J., Richter, H., Kuhn, A., Mano, N., Fischer, P.

Lab on a Chip, 17(10):1761-1768, Febuary 2017, Recent HOT Article (article)

Abstract
A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

Recent HOT Article.

pf

DOI [BibTex]

DOI [BibTex]


no image
DiSMEC – Distributed Sparse Machines for Extreme Multi-label Classification

Babbar, R., Schölkopf, B.

Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (WSDM), pages: 721-729, Febuary 2017 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Policy Search with High-Dimensional Context Variables

Tangkaratt, V., van Hoof, H., Parisi, S., Neumann, G., Peters, J., Sugiyama, M.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), pages: 2632-2638, (Editors: Satinder P. Singh and Shaul Markovitch), AAAI Press, Febuary 2017 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl toc image
Strong Rotational Anisotropies Affect Nonlinear Chiral Metamaterials

Hooper, D. C., Mark, A. G., Kuppe, C., Collins, J. T., Fischer, P., Valev, V. K.

Advanced Materials, 29(13):1605110, January 2017 (article)

Abstract
Masked by rotational anisotropies, the nonlinear chiroptical response of a metamaterial is initially completely inaccessible. Upon rotating the sample the chiral information emerges. These results highlight the need for a general method to extract the true chiral contributions to the nonlinear optical signal, which would be hugely valuable in the present context of increasingly complex chiral meta/nanomaterials.

pf

DOI [BibTex]

DOI [BibTex]


no image
Model-based Contextual Policy Search for Data-Efficient Generalization of Robot Skills

Kupcsik, A., Deisenroth, M., Peters, J., Ai Poh, L., Vadakkepat, V., Neumann, G.

Artificial Intelligence, 247, pages: 415-439, 2017, Special Issue on AI and Robotics (article)

ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Anticipatory Action Selection for Human-Robot Table Tennis

Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.

Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)

Abstract
Abstract Anticipation can enhance the capability of a robot in its interaction with humans, where the robot predicts the humans' intention for selecting its own action. We present a novel framework of anticipatory action selection for human-robot interaction, which is capable to handle nonlinear and stochastic human behaviors such as table tennis strokes and allows the robot to choose the optimal action based on prediction of the human partner's intention with uncertainty. The presented framework is generic and can be used in many human-robot interaction scenarios, for example, in navigation and human-robot co-manipulation. In this article, we conduct a case study on human-robot table tennis. Due to the limited amount of time for executing hitting movements, a robot usually needs to initiate its hitting movement before the opponent hits the ball, which requires the robot to be anticipatory based on visual observation of the opponent's movement. Previous work on Intention-Driven Dynamics Models (IDDM) allowed the robot to predict the intended target of the opponent. In this article, we address the problem of action selection and optimal timing for initiating a chosen action by formulating the anticipatory action selection as a Partially Observable Markov Decision Process (POMDP), where the transition and observation are modeled by the \{IDDM\} framework. We present two approaches to anticipatory action selection based on the \{POMDP\} formulation, i.e., a model-free policy learning method based on Least-Squares Policy Iteration (LSPI) that employs the \{IDDM\} for belief updates, and a model-based Monte-Carlo Planning (MCP) method, which benefits from the transition and observation model by the IDDM. Experimental results using real data in a simulated environment show the importance of anticipatory action selection, and that \{POMDPs\} are suitable to formulate the anticipatory action selection problem by taking into account the uncertainties in prediction. We also show that existing algorithms for POMDPs, such as \{LSPI\} and MCP, can be applied to substantially improve the robot's performance in its interaction with humans.

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
easyGWAS: A Cloud-based Platform for Comparing the Results of Genome-wide Association Studies

Grimm, D., Roqueiro, D., Salome, P., Kleeberger, S., Greshake, B., Zhu, W., Liu, C., Lippert, C., Stegle, O., Schölkopf, B., Weigel, D., Borgwardt, K.

The Plant Cell, 29(1):5-19, 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Novel Unsupervised Segmentation Approach Quantifies Tumor Tissue Populations Using Multiparametric MRI: First Results with Histological Validation

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., Disselhorst, J. A.

Molecular Imaging and Biology, 19(3):391-397, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Elements of Causal Inference - Foundations and Learning Algorithms

Peters, J., Janzing, D., Schölkopf, B.

Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

ei

PDF [BibTex]

PDF [BibTex]


no image
Minimax Estimation of Kernel Mean Embeddings

Tolstikhin, I., Sriperumbudur, B., Muandet, K.

Journal of Machine Learning Research, 18(86):1-47, 2017 (article)

ei

link (url) Project Page [BibTex]


no image
Kernel Mean Embedding of Distributions: A Review and Beyond

Muandet, K., Fukumizu, K., Sriperumbudur, B., Schölkopf, B.

Foundations and Trends in Machine Learning, 10(1-2):1-141, 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Prediction of intention during interaction with iCub with Probabilistic Movement Primitives

Dermy, O., Paraschos, A., Ewerton, M., Charpillet, F., Peters, J., Ivaldi, S.

Frontiers in Robotics and AI, 4, pages: 45, 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Iterative Feedback-basierte Korrekturstrategien beim Bewegungslernen von Mensch-Roboter-Dyaden

Ewerton, M., Kollegger, G., Maeda, G., Wiemeyer, J., Peters, J.

In DVS Sportmotorik 2017, 2017 (inproceedings)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
BIMROB - Bidirectional Interaction between human and robot for the learning of movements - Robot trains human - Human trains robot

Kollegger, G., Wiemeyer, J., Ewerton, M., Peters, J.

In Inovation & Technologie im Sport - 23. Sportwissenschaftlicher Hochschultag der deutschen Vereinigung für Sportwissenschaft, pages: 179, (Editors: A. Schwirtz, F. Mess, Y. Demetriou & V. Senner ), Czwalina-Feldhaus, 2017 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Manifold-based multi-objective policy search with sample reuse

Parisi, S., Pirotta, M., Peters, J.

Neurocomputing, 263, pages: 3-14, (Editors: Madalina Drugan, Marco Wiering, Peter Vamplew, and Madhu Chetty), 2017, Special Issue on Multi-Objective Reinforcement Learning (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

Project Page [BibTex]

Project Page [BibTex]


no image
BIMROB – Bidirektionale Interaktion von Mensch und Roboter beim Bewegungslernen

Wiemeyer, J., Peters, J., Kollegger, G., Ewerton, M.

DVS Sportmotorik 2017, 2017 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Spectral Clustering predicts tumor tissue heterogeneity using dynamic 18F-FDG PET: a complement to the standard compartmental modeling approach

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Schölkopf, B., Pichler, B. J., Disselhorst, J. A.

Journal of Nuclear Medicine, 58(4):651-657, 2017 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Electroencephalographic identifiers of motor adaptation learning

Ozdenizci, O., Yalcin, M., Erdogan, A., Patoglu, V., Grosse-Wentrup, M., Cetin, M.

Journal of Neural Engineering, 14(4):046027, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Detecting distortions of peripherally presented letter stimuli under crowded conditions

Wallis, T. S. A., Tobias, S., Bethge, M., Wichmann, F. A.

Attention, Perception, & Psychophysics, 79(3):850-862, 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Temporal evolution of the central fixation bias in scene viewing

Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.

Journal of Vision, 17(13):3, 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Unsupervised clustering of EOG as a viable substitute for optical eye-tracking

Flad, N., Fomina, T., Bülthoff, H. H., Chuang, L. L.

In First Workshop on Eye Tracking and Visualization (ETVIS 2015), pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
BundleMAP: Anatomically Localized Classification, Regression, and Hypothesis Testing in Diffusion MRI

Khatami, M., Schmidt-Wilcke, T., Sundgren, P. C., Abbasloo, A., Schölkopf, B., Schultz, T.

Pattern Recognition, 63, pages: 593-600, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)

Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.

Dagstuhl Reports, 6(11):142-167, 2017 (book)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Statistical Asymmetries Between Cause and Effect

Janzing, D.

In Time in Physics, pages: 129-139, Tutorials, Schools, and Workshops in the Mathematical Sciences, (Editors: Renner, Renato and Stupar, Sandra), Springer International Publishing, Cham, 2017 (inbook)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A parametric texture model based on deep convolutional features closely matches texture appearance for humans

Wallis, T. S. A., Funke, C. M., Ecker, A. S., Gatys, L. A., Wichmann, F. A., Bethge, M.

Journal of Vision, 17(12), 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Robot Learning

Peters, J., Tedrake, R., Roy, N., Morimoto, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 1106-1109, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Development and Evaluation of a Portable BCI System for Remote Data Acquisition

Emde, T.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis

Fomina, T.

Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Model Selection for Gaussian Mixture Models

Huang, T., Peng, H., Zhang, K.

Statistica Sinica, 27(1):147-169, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
An image-computable psychophysical spatial vision model

Schütt, H. H., Wichmann, F. A.

Journal of Vision, 17(12), 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Methods and measurements to compare men against machines

Wichmann, F. A., Janssen, D. H. J., Geirhos, R., Aguilar, G., Schütt, H. H., Maertens, M., Bethge, M.

Electronic Imaging, pages: 36-45(10), 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]


no image
A Comparison of Autoregressive Hidden Markov Models for Multimodal Manipulations With Variable Masses

Kroemer, O., Peters, J.

IEEE Robotics and Automation Letters, 2(2):1101-1108, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Phase Estimation for Fast Action Recognition and Trajectory Generation in Human-Robot Collaboration

Maeda, G., Ewerton, M., Neumann, G., Lioutikov, R., Peters, J.

International Journal of Robotics Research, 36(13-14):1579-1594, 2017, Special Issue on the Seventeenth International Symposium on Robotics Research (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]