Header logo is


2018


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
In this demonstration, you will hold two pen-shaped modules: an in-pen and an out-pen. The in-pen is instrumented with a high-bandwidth three-axis accelerometer, and the out-pen contains a one-axis voice coil actuator. Use the in-pen to interact with different surfaces; the measured 3D accelerations are continually converted into 1D vibrations and rendered with the out-pen for you to feel. You can test conversion methods that range from simply selecting a single axis to applying a discrete Fourier transform or principal component analysis for realistic and brisk real-time conversion.

hi

Project Page [BibTex]

2018


Project Page [BibTex]


no image
Haptipedia: Exploring Haptic Device Design Through Interactive Visualizations

Seifi, H., Fazlollahi, F., Park, G., Kuchenbecker, K. J., MacLean, K. E.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
How many haptic devices have been proposed in the last 30 years? How can we leverage this rich source of design knowledge to inspire future innovations? Our goal is to make historical haptic invention accessible through interactive visualization of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. In this demonstration, participants can explore Haptipedia’s growing library of grounded force feedback devices through several prototype visualizations, interact with 3D simulations of the device mechanisms and movements, and tell us about the attributes and devices that could make Haptipedia a useful resource for the haptic design community.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl koala
Designing a Haptic Empathetic Robot Animal for Children with Autism

Burns, R., Kuchenbecker, K. J.

Workshop paper (4 pages) presented at the RSS Workshop on Robot-Mediated Autism Intervention: Hardware, Software and Curriculum, Pittsburgh, USA, June 2018 (misc)

Abstract
Children with autism often endure sensory overload, may be nonverbal, and have difficulty understanding and relaying emotions. These experiences result in heightened stress during social interaction. Animal-assisted intervention has been found to improve the behavior of children with autism during social interaction, but live animal companions are not always feasible. We are thus in the process of designing a robotic animal to mimic some successful characteristics of animal-assisted intervention while trying to improve on others. The over-arching hypothesis of this research is that an appropriately designed robot animal can reduce stress in children with autism and empower them to engage in social interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Delivering 6-DOF Fingertip Tactile Cues

Young, E., Kuchenbecker, K. J.

Work-in-progress paper (5 pages) presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Soft Multi-Axis Boundary-Electrode Tactile Sensors for Whole-Body Robotic Skin

Lee, H., Kim, J., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the RSS Pioneers Workshop, Pittsburgh, USA, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Haptics and Haptic Interfaces

Kuchenbecker, K. J.

In Encyclopedia of Robotics, (Editors: Marcelo H. Ang and Oussama Khatib and Bruno Siciliano), Springer, May 2018 (incollection)

Abstract
Haptics is an interdisciplinary field that seeks to both understand and engineer touch-based interaction. Although a wide range of systems and applications are being investigated, haptics researchers often concentrate on perception and manipulation through the human hand. A haptic interface is a mechatronic system that modulates the physical interaction between a human and his or her tangible surroundings. Haptic interfaces typically involve mechanical, electrical, and computational layers that work together to sense user motions or forces, quickly process these inputs with other information, and physically respond by actuating elements of the user’s surroundings, thereby enabling him or her to act on and feel a remote and/or virtual environment.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Arm-Worn Tactile Displays

Kuchenbecker, K. J.

Cross-Cutting Challenge Interactive Discussion presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Fingertips and hands captivate the attention of most haptic interface designers, but humans can feel touch stimuli across the entire body surface. Trying to create devices that both can be worn and can deliver good haptic sensations raises challenges that rarely arise in other contexts. Most notably, tactile cues such as vibration, tapping, and squeezing are far simpler to implement in wearable systems than kinesthetic haptic feedback. This interactive discussion will present a variety of relevant projects to which I have contributed, attempting to pull out common themes and ideas for the future.

hi

[BibTex]

[BibTex]


Thumb xl wireframe main
Haptipedia: An Expert-Sourced Interactive Device Visualization for Haptic Designers

Seifi, H., MacLean, K. E., Kuchenbecker, K. J., Park, G.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Much of three decades of haptic device invention is effectively lost to today’s designers: dispersion across time, region, and discipline imposes an incalculable drag on innovation in this field. Our goal is to make historical haptic invention accessible through interactive navigation of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. To build this open resource, we will systematically mine the literature and engage the haptics community for expert annotation. In a multi-year broad-based initiative, we will empirically derive salient attributes of haptic devices, design an interactive visualization tool where device creators and repurposers can efficiently explore and search Haptipedia, and establish methods and tools to manually and algorithmically collect data from the haptics literature and our community of experts. This paper outlines progress in compiling an initial corpus of grounded force-feedback devices and their attributes, and it presents a concept sketch of the interface we envision.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Exercising with Baxter: Design and Evaluation of Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Workshop paper (6 pages) presented at the HRI Workshop on Personal Robots for Exercising and Coaching, Chicago, USA, March 2018 (misc)

Abstract
The worldwide population of older adults is steadily increasing and will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active and engaged while living at home. We developed eight human-robot exercise games for the Baxter Research Robot with the guidance of experts in game design, therapy, and rehabilitation. After extensive iteration, these games were employed in a user study that tested their viability with 20 younger and 20 older adult users. All participants were willing to enter Baxter’s workspace and physically interact with the robot. User trust and confidence in Baxter increased significantly between pre- and post-experiment assessments, and one individual from the target user population supplied us with abundant positive feedback about her experience. The preliminary results presented in this paper indicate potential for the use of two-armed human-scale robots for social-physical exercise interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl huggingpicture
Emotionally Supporting Humans Through Robot Hugs

Block, A. E., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the HRI Pioneers Workshop, Chicago, USA, March 2018 (misc)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, we want to enable robots to safely hug humans. This research strives to create and study a high fidelity robotic system that provides emotional support to people through hugs. This paper outlines our previous work evaluating human responses to a prototype’s physical and behavioral characteristics, and then it lays out our ongoing and future work.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser ps hi
Towards a Statistical Model of Fingertip Contact Deformations from 4D Data

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction even though this knowledge is essential to control wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning and modeling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution. The results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion of about 0.2 cm and proximal/distal bending of about 30◦, deformations that cannot be captured by imaging of the contact area alone. This project constitutes a first step towards an accurate statistical model of the finger’s behavior during haptic interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Can Humans Infer Haptic Surface Properties from Images?

Burka, A., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Human children typically experience their surroundings both visually and haptically, providing ample opportunities to learn rich cross-sensory associations. To thrive in human environments and interact with the real world, robots also need to build models of these cross-sensory associations; current advances in machine learning should make it possible to infer models from large amounts of data. We previously built a visuo-haptic sensing device, the Proton Pack, and are using it to collect a large database of matched multimodal data from tool-surface interactions. As a benchmark to compare with machine learning performance, we conducted a human subject study (n = 84) on estimating haptic surface properties (here: hardness, roughness, friction, and warmness) from images. Using a 100-surface subset of our database, we showed images to study participants and collected 5635 ratings of the four haptic properties, which we compared with ratings made by the Proton Pack operator and with physical data recorded using motion, force, and vibration sensors. Preliminary results indicate weak correlation between participant and operator ratings, but potential for matching up certain human ratings (particularly hardness and roughness) with features from the literature.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Learning to select computations

Callaway, F., Gul, S., Krueger, P., Griffiths, T. L., Lieder, F.

In Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference, 2018 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases

Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.

Frontiers in Neurology, 9(67):1-7, 2018 (article)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning a Structured Neural Network Policy for a Hopping Task.

Viereck, J., Kozolinsky, J., Herzog, A., Righetti, L.

IEEE Robotics and Automation Letters, 3(4):4092-4099, October 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
The Impact of Robotics and Automation on Working Conditions and Employment [Ethical, Legal, and Societal Issues]

Pham, Q., Madhavan, R., Righetti, L., Smart, W., Chatila, R.

IEEE Robotics and Automation Magazine, 25(2):126-128, June 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Lethal Autonomous Weapon Systems [Ethical, Legal, and Societal Issues]

Righetti, L., Pham, Q., Madhavan, R., Chatila, R.

IEEE Robotics \& Automation Magazine, 25(1):123-126, March 2018 (article)

Abstract
The topic of lethal autonomous weapon systems has recently caught public attention due to extensive news coverage and apocalyptic declarations from famous scientists and technologists. Weapon systems with increasing autonomy are being developed due to fast improvements in machine learning, robotics, and automation in general. These developments raise important and complex security, legal, ethical, societal, and technological issues that are being extensively discussed by scholars, nongovernmental organizations (NGOs), militaries, governments, and the international community. Unfortunately, the robotics community has stayed out of the debate, for the most part, despite being the main provider of autonomous technologies. In this column, we review the main issues raised by the increase of autonomy in weapon systems and the state of the international discussion. We argue that the robotics community has a fundamental role to play in these discussions, for its own sake, to provide the often-missing technical expertise necessary to frame the debate and promote technological development in line with the IEEE Robotics and Automation Society (RAS) objective of advancing technology to benefit humanity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2017


no image
Evaluation of High-Fidelity Simulation as a Training Tool in Transoral Robotic Surgery

Bur, A. M., Gomez, E. D., Newman, J. G., Weinstein, G. S., Bert W. O’Malley, J., Rassekh, C. H., Kuchenbecker, K. J.

Laryngoscope, 127(12):2790-2795, December 2017 (article)

hi

DOI [BibTex]

2017


DOI [BibTex]


no image
Synchronicity Trumps Mischief in Rhythmic Human-Robot Social-Physical Interaction

Fitter, N. T., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robotics Research (ISRR), Puerto Varas, Chile, December 2017 (inproceedings) In press

Abstract
Hand-clapping games and other forms of rhythmic social-physical interaction might help foster human-robot teamwork, but the design of such interactions has scarcely been explored. We leveraged our prior work to enable the Rethink Robotics Baxter Research Robot to competently play one-handed tempo-matching hand-clapping games with a human user. To understand how such a robot’s capabilities and behaviors affect user perception, we created four versions of this interaction: the hand clapping could be initiated by either the robot or the human, and the non-initiating partner could be either cooperative, yielding synchronous motion, or mischievously uncooperative. Twenty adults tested two clapping tempos in each of these four interaction modes in a random order, rating every trial on standardized scales. The study results showed that having the robot initiate the interaction gave it a more dominant perceived personality. Despite previous results on the intrigue of misbehaving robots, we found that moving synchronously with the robot almost always made the interaction more enjoyable, less mentally taxing, less physically demanding, and lower effort for users than asynchronous interactions caused by robot or human mischief. Taken together, our results indicate that cooperative rhythmic social-physical interaction has the potential to strengthen human-robot partnerships.

hi

[BibTex]

[BibTex]


no image
Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer

Brown, J. D., O’Brien, C. E., Leung, S. C., Dumon, K. R., Lee, D. I., Kuchenbecker, K. J.

IEEE Transactions on Biomedical Engineering, 64(9):2263-2275, September 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Stiffness Perception during Pinching and Dissection with Teleoperated Haptic Forceps

Ng, C., Zareinia, K., Sun, Q., Kuchenbecker, K. J.

In Proceedings of the International Symposium on Robot and Human Interactive Communication (RO-MAN), pages: 456-463, Lisbon, Portugal, August 2017 (inproceedings)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl full outfit
Physical and Behavioral Factors Improve Robot Hug Quality

Block, A. E., Kuchenbecker, K. J.

Workshop Paper (2 pages) presented at the RO-MAN Workshop on Social Interaction and Multimodal Expression for Socially Intelligent Robots, Lisbon, Portugal, August 2017 (misc)

Abstract
A hug is one of the most basic ways humans can express affection. As hugs are so common, a natural progression of robot development is to have robots one day hug humans as seamlessly as these intimate human-human interactions occur. This project’s purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a warm, soft, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot char- acteristics and nine randomly ordered trials with varied hug pressure and duration. We found that people prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Ungrounded Haptic Augmented Reality System for Displaying Texture and Friction

Culbertson, H., Kuchenbecker, K. J.

IEEE/ASME Transactions on Mechatronics, 22(4):1839-1849, August 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Design of a Parallel Continuum Manipulator for 6-DOF Fingertip Haptic Display

Young, E. M., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 599-604, Munich, Germany, June 2017, Finalist for best poster paper (inproceedings)

Abstract
Despite rapid advancements in the field of fingertip haptics, rendering tactile cues with six degrees of freedom (6 DOF) remains an elusive challenge. In this paper, we investigate the potential of displaying fingertip haptic sensations with a 6-DOF parallel continuum manipulator (PCM) that mounts to the user's index finger and moves a contact platform around the fingertip. Compared to traditional mechanisms composed of rigid links and discrete joints, PCMs have the potential to be strong, dexterous, and compact, but they are also more complicated to design. We define the design space of 6-DOF parallel continuum manipulators and outline a process for refining such a device for fingertip haptic applications. Following extensive simulation, we obtain 12 designs that meet our specifications, construct a manually actuated prototype of one such design, and evaluate the simulation's ability to accurately predict the prototype's motion. Finally, we demonstrate the range of deliverable fingertip tactile cues, including a normal force into the finger and shear forces tangent to the finger at three extreme points on the boundary of the fingertip.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
High Magnitude Unidirectional Haptic Force Display Using a Motor/Brake Pair and a Cable

Hu, S., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 394-399, Munich, Germany, June 2017 (inproceedings)

Abstract
Clever electromechanical design is required to make the force feedback delivered by a kinesthetic haptic interface both strong and safe. This paper explores a onedimensional haptic force display that combines a DC motor and a magnetic particle brake on the same shaft. Rather than a rigid linkage, a spooled cable connects the user to the actuators to enable a large workspace, reduce the moving mass, and eliminate the sticky residual force from the brake. This design combines the high torque/power ratio of the brake and the active output capabilities of the motor to provide a wider range of forces than can be achieved with either actuator alone. A prototype of this device was built, its performance was characterized, and it was used to simulate constant force sources and virtual springs and dampers. Compared to the conventional design of using only a motor, the hybrid device can output higher unidirectional forces at the expense of free space feeling less free.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Physically Interactive Exercise Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Perception of Force and Stiffness in the Presence of Low-Frequency Haptic Noise

Gurari, N., Okamura, A. M., Kuchenbecker, K. J.

PLoS ONE, 12(6):e0178605, June 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Wrist-Squeezing Force-Feedback System for Robotic Surgery Training

Brown, J. D., Fernandez, J. N., Cohen, S. P., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 107-112, Munich, Germany, June 2017 (inproceedings)

Abstract
Over time, surgical trainees learn to compensate for the lack of haptic feedback in commercial robotic minimally invasive surgical systems. Incorporating touch cues into robotic surgery training could potentially shorten this learning process if the benefits of haptic feedback were sustained after it is removed. In this paper, we develop a wrist-squeezing haptic feedback system and evaluate whether it holds the potential to train novice da Vinci users to reduce the force they exert on a bimanual inanimate training task. Subjects were randomly divided into two groups according to a multiple baseline experimental design. Each of the ten participants moved a ring along a curved wire nine times while the haptic feedback was conditionally withheld, provided, and withheld again. The realtime tactile feedback of applied force magnitude significantly reduced the integral of the force produced by the da Vinci tools on the task materials, and this result remained even when the haptic feedback was removed. Overall, our findings suggest that wrist-squeezing force feedback can play an essential role in helping novice trainees learn to minimize the force they exert with a surgical robot.

hi

DOI [BibTex]

DOI [BibTex]


no image
Handling Scan-Time Parameters in Haptic Surface Classification

Burka, A., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 424-429, Munich, Germany, June 2017 (inproceedings)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Proton Pack: Visuo-Haptic Surface Data Recording

Burka, A., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Teaching a Robot to Collaborate with a Human Via Haptic Teleoperation

Hu, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl full outfit
How Should Robots Hug?

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Evaluation of a Vibrotactile Simulator for Dental Caries Detection

Kuchenbecker, K. J., Parajon, R., Maggio, M. P.

Simulation in Healthcare, 12(3):148-156, June 2017 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Proton 2: Increasing the Sensitivity and Portability of a Visuo-haptic Surface Interaction Recorder

Burka, A., Rajvanshi, A., Allen, S., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 439-445, Singapore, May 2017 (inproceedings)

Abstract
The Portable Robotic Optical/Tactile ObservatioN PACKage (PROTONPACK, or Proton for short) is a new handheld visuo-haptic sensing system that records surface interactions. We previously demonstrated system calibration and a classification task using external motion tracking. This paper details improvements in surface classification performance and removal of the dependence on external motion tracking, necessary before embarking on our goal of gathering a vast surface interaction dataset. Two experiments were performed to refine data collection parameters. After adjusting the placement and filtering of the Proton's high-bandwidth accelerometers, we recorded interactions between two differently-sized steel tooling ball end-effectors (diameter 6.35 and 9.525 mm) and five surfaces. Using features based on normal force, tangential force, end-effector speed, and contact vibration, we trained multi-class SVMs to classify the surfaces using 50 ms chunks of data from each end-effector. Classification accuracies of 84.5% and 91.5% respectively were achieved on unseen test data, an improvement over prior results. In parallel, we pursued on-board motion tracking, using the Proton's camera and fiducial markers. Motion tracks from the external and onboard trackers agree within 2 mm and 0.01 rad RMS, and the accuracy decreases only slightly to 87.7% when using onboard tracking for the 9.525 mm end-effector. These experiments indicate that the Proton 2 is ready for portable data collection.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
An Interactive Augmented-Reality Video Training Platform for the da Vinci Surgical System

Carlson, J., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the ICRA Workshop on C4 Surgical Robots, Singapore, May 2017 (misc)

Abstract
Teleoperated surgical robots such as the Intuitive da Vinci Surgical System facilitate minimally invasive surgeries, which decrease risk to patients. However, these systems can be difficult to learn, and existing training curricula on surgical simulators do not offer students the realistic experience of a full operation. This paper presents an augmented-reality video training platform for the da Vinci that will allow trainees to rehearse any surgery recorded by an expert. While the trainee operates a da Vinci in free space, they see their own instruments overlaid on the expert video. Tools are identified in the source videos via color segmentation and kernelized correlation filter tracking, and their depth is calculated from the da Vinci’s stereoscopic video feed. The user tries to follow the expert’s movements, and if any of their tools venture too far away, the system provides instantaneous visual feedback and pauses to allow the user to correct their motion. The trainee can also rewind the expert video by bringing either da Vinci tool very close to the camera. This combined and augmented video provides the user with an immersive and interactive training experience.

hi

[BibTex]

[BibTex]


no image
Hand-Clapping Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, March 2017 (misc)

Abstract
Robots that work alongside humans might be more effective if they could forge a strong social bond with their human partners. Hand-clapping games and other forms of rhythmic social-physical interaction may foster human-robot teamwork, but the design of such interactions has scarcely been explored. At the HRI 2017 conference, we will showcase several such interactions taken from our recent work with the Rethink Robotics Baxter Research Robot, including tempo-matching, Simon says, and Pat-a-cake-like games. We believe conference attendees will be both entertained and intrigued by this novel demonstration of social-physical HRI.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Automatic OSATS Rating of Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 31(Supplement 1):S28, Extended abstract presented as a podium presentation at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Springer, Houston, USA, March 2017 (misc)

Abstract
Introduction: Minimally invasive surgery has revolutionized surgical practice, but challenges remain. Trainees must acquire complex technical skills while minimizing patient risk, and surgeons must maintain their skills for rare procedures. These challenges are magnified in pediatric surgery due to the smaller spaces, finer tissue, and relative dearth of both inanimate and virtual simulators. To build technical expertise, trainees need opportunities for deliberate practice with specific performance feedback, which is typically provided via tedious human grading. This study aimed to validate a novel motion-tracking system and machine learning algorithm for automatically evaluating trainee performance on a pediatric laparoscopic suturing task using a 1–5 OSATS Overall Skill rating. Methods: Subjects (n=14) ranging from medical students to fellows per- formed one or two trials of an intracorporeal suturing task in a custom pediatric laparoscopy training box (Fig. 1) after watching a video of ideal performance by an expert. The position and orientation of the tools and endoscope were recorded over time using Ascension trakSTAR magnetic motion-tracking sensors, and both instrument grasp angles were recorded over time using flex sensors on the handles. The 27 trials were video-recorded and scored on the OSATS scale by a senior fellow; ratings ranged from 1 to 4. The raw motion data from each trial was processed to calculate over 200 preliminary motion parameters. Regularized least-squares regression (LASSO) was used to identify the most predictive parameters for inclusion in a regression tree. Model performance was evaluated by leave-one-subject-out cross validation, wherein the automatic scores given to each subject’s trials (by a model trained on all other data) are compared to the corresponding human rater scores. Results: The best-performing LASSO algorithm identified 14 predictive parameters for inclusion in the regression tree, including completion time, linear path length, angular path length, angular acceleration, grasp velocity, and grasp acceleration. The final model’s raw output showed a strong positive correlation of 0.87 with the reviewer-generated scores, and rounding the output to the nearest integer yielded a leave-one-subject-out cross-validation accuracy of 77.8%. Results are summarized in the confusion matrix (Table 1). Conclusions: Our novel motion-tracking system and regression model automatically gave previously unseen trials overall skill scores that closely match scores from an expert human rater. With additional data and further development, this system may enable creation of a motion-based training platform for pediatric laparoscopic surgery and could yield insights into the fundamental components of surgical skill.

hi

[BibTex]

[BibTex]


no image
How Much Haptic Surface Data is Enough?

Burka, A., Kuchenbecker, K. J.

Workshop paper (5 pages) presented at the AAAI Spring Symposium on Interactive Multi-Sensory Object Perception for Embodied Agents, Stanford, USA, March 2017 (misc)

Abstract
The Proton Pack is a portable visuo-haptic surface interaction recording device that will be used to collect a vast multimodal dataset, intended for robots to use as part of an approach to understanding the world around them. In order to collect a useful dataset, we want to pick a suitable interaction duration for each surface, noting the tradeoff between data collection resources and completeness of data. One interesting approach frames the data collection process as an online learning problem, building an incremental surface model and using that model to decide when there is enough data. Here we examine how to do such online surface modeling and when to stop collecting data, using kinetic friction as a first domain in which to apply online modeling.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces

Culbertson, H., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):63-74, January 2017 (article)

hi

[BibTex]


no image
Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task

Khurshid, R. P., Fitter, N. T., Fedalei, E. A., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):40-53, January 2017 (article)

hi

[BibTex]

[BibTex]


no image
Momentum-Centered Control of Contact Interactions

Righetti, L., Herzog, A.

In Geometric and Numerical Foundations of Movements, 117, pages: 339-359, Springer Tracts in Advanced Robotics, Springer, Cham, 2017 (incollection)

mg

link (url) [BibTex]

link (url) [BibTex]


no image
Pattern Generation for Walking on Slippery Terrains

Khadiv, M., Moosavian, S. A. A., Herzog, A., Righetti, L.

In 2017 5th International Conference on Robotics and Mechatronics (ICROM), Iran, August 2017 (inproceedings)

Abstract
In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this for- mulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.

mg

link (url) [BibTex]

link (url) [BibTex]

2016


no image
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.

Autonomous Robots, 40(3):473-491, 2016 (article)

Abstract
Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.

am mg

link (url) DOI [BibTex]


no image
Inertial Sensor-Based Humanoid Joint State Estimation

Rotella, N., Mason, S., Schaal, S., Righetti, L.

In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages: 1825-1831, IEEE, Stockholm, Sweden, 2016 (inproceedings)

Abstract
This work presents methods for the determination of a humanoid robot's joint velocities and accelerations directly from link-mounted Inertial Measurement Units (IMUs) each containing a three-axis gyroscope and a three-axis accelerometer. No information about the global pose of the floating base or its links is required and precise knowledge of the link IMU poses is not necessary due to presented calibration routines. Additionally, a filter is introduced to fuse gyroscope angular velocities with joint position measurements and compensate the computed joint velocities for time-varying gyroscope biases. The resulting joint velocities are subject to less noise and delay than filtered velocities computed from numerical differentiation of joint potentiometer signals, leading to superior performance in joint feedback control as demonstrated in experiments performed on a SARCOS hydraulic humanoid.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Stepping Stabilization Using a Combination of DCM Tracking and Step Adjustment

Khadiv, M., Kleff, S., Herzog, A., Moosavian, S. A. A., Schaal, S., Righetti, L.

In 2016 4th International Conference on Robotics and Mechatronics (ICROM), pages: 130-135, IEEE, Teheran, Iran, 2016 (inproceedings)

Abstract
In this paper, a method for stabilizing biped robots stepping by a combination of Divergent Component of Motion (DCM) tracking and step adjustment is proposed. In this method, the DCM trajectory is generated, consistent with the predefined footprints. Furthermore, a swing foot trajectory modification strategy is proposed to adapt the landing point, using DCM measurement. In order to apply the generated trajectories to the full robot, a Hierarchical Inverse Dynamics (HID) is employed. The HID enables us to use different combinations of the DCM tracking and step adjustment for stabilizing different biped robots. Simulation experiments on two scenarios for two different simulated robots, one with active ankles and the other with passive ankles, are carried out. Simulation results demonstrate the effectiveness of the proposed method for robots with both active and passive ankles.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]