Header logo is



no image
Gene delivery particle engineering strategies for shape-dependent targeting of cells and tissues.

Kozielski, K., Sitti, M.

Current Gene Therapy, 17, 2017 (article)

Abstract
Background: Successful gene delivery requires overcoming both systemic and intracellular obstacles before the nucleic acid cargo can successfully reach its tissue and subcellular target location. Materials & Methods: Non-viral mechanisms to enable targeting while avoiding off-target delivery have arisen via biological, chemical, and physical engineering strategies. Discussion: Herein we will discuss the physical parameters in particle design that promote tissue- and cell-targeted delivery of genetic cargo. We will discuss systemic concerns, such as circulation, tissue localization, and clearance, as well as cell-scale obstacles, such as cellular uptake and nucleic acid packaging. Conclusion: In particular, we will focus on engineering particle shape and size in order to enhance delivery and promote precise targeting. We will also address methods to program or change particle shape in situ using environmentally triggered cues.

pi

DOI [BibTex]


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl image toc
Multi-fractal characterization of bacterial swimming dynamics: a case study on real and simulated Serratia marcescens

Koorehdavoudi, H., Bogdan, P., Wei, G., Marculescu, R., Zhuang, J., Carlsen, R. W., Sitti, M.

Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 473(2203), The Royal Society, 2017 (article)

Abstract
To add to the current state of knowledge about bacterial swimming dynamics, in this paper, we study the fractal swimming dynamics of populations of Serratia marcescens bacteria both in vitro and in silico, while accounting for realistic conditions like volume exclusion, chemical interactions, obstacles and distribution of chemoattractant in the environment. While previous research has shown that bacterial motion is non-ergodic, we demonstrate that, besides the non-ergodicity, the bacterial swimming dynamics is multi-fractal in nature. Finally, we demonstrate that the multi-fractal characteristic of bacterial dynamics is strongly affected by bacterial density and chemoattractant concentration.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl comp 5d wbkgng copy
Microemulsion-Based Soft Bacteria-Driven Microswimmers for Active Cargo Delivery

Singh, A. V., Hosseinidoust, Z., Park, B., Yasa, O., Sitti, M.

ACS Nano, 0(0):null, 2017, PMID: 28858477 (article)

Abstract
Biohybrid cell-driven microsystems offer unparalleled possibilities for realization of soft microrobots at the micron scale. Here, we introduce a bacteria-driven microswimmer that combines the active locomotion and sensing capabilities of bacteria with the desirable encapsulation and viscoelastic properties of a soft double-micelle microemulsion for active transport and delivery of cargo (e.g., imaging agents, genes, and drugs) to living cells. Quasi-monodisperse double emulsions were synthesized with an aqueous core that encapsulated the fluorescence imaging agents, as a proof-of-concept cargo in this study, and an outer oil shell that was functionalized with streptavidin for specific and stable attachment of biotin-conjugated Escherichia coli. Motile bacteria effectively propelled the soft microswimmers across a Transwell membrane, actively delivering imaging agents (i.e., dyes) encapsulated inside of the micelles to a monolayer of cultured MCF7 breast cancer and J744A.1 macrophage cells, which enabled real-time, live-cell imaging of cell organelles, namely mitochondria, endoplasmic reticulum, and Golgi body. This in vitro model demonstrates the proof-of-concept feasibility of the proposed soft microswimmers and offers promise for potential biomedical applications in active and/or targeted transport and delivery of imaging agents, drugs, stem cells, siRNA, and therapeutic genes to live tissue in in vitro disease models (e.g., organ-on-a-chip devices) and stagnant or low-flow-velocity fluidic regions of the human body.

pi

link (url) DOI Project Page [BibTex]


no image
Mode Evolution in Strongly Coupled Plasmonic Dolmens Fabricated by Templated Assembly

Flauraud, V., Bernasconi, G. D., Butet, J., Mastrangeli, M., Alexander, D. T. L., Martin, O. J. F., Brugger, J.

ACS Photonics, 4(7):1661-1668, 2017 (article)

Abstract
Plasmonic antennas have enabled a wealth of applications that exploit tailored near-fields and radiative properties, further endowed by the bespoke interactions of multiple resonant building blocks. Specifically, when the interparticle distances are reduced to a few nanometers, coupling may be greatly enhanced leading to ultimate near-field intensities and confinement along with a large energy splitting of resonant modes. While this concept is well-known, the fabrication and characterization of suitable multimers with controlled geometries and few-nanometer gaps remains highly challenging. In this article, we present the topographically templated assembly of single-crystal colloidal gold nanorods into trimers, with a dolmen geometry. This fabrication method enables the precise positioning of high-quality nanorods, with gaps as small as 1.5 nm, which permits a gradual and controlled symmetry breaking by tuning the arrangement of these strongly coupled nanostructures. To characterize the fabricated structures, we perform electron energy loss spectroscopy (EELS) near-field hyperspectral imaging and geometrically accurate EELS, plane wave, and eigenmode full-wave computations to reveal the principles governing the electromagnetic response of such nanostructures that have been extensively studied under plane wave excitation for their Fano resonant properties. These experiments track the evolution of the multipolar interactions with high accuracy as the antenna geometry varies. Our results provide new insights in strongly coupled single-crystal building blocks and open news opportunities for the design and fabrication of plasmonic systems.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl recent toc
Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery

Amjadia, M., Mostaghacia, B., Sittia, M.

Current Gene Therapy, 17, 2017 (article)

Abstract
There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs.

pi

DOI [BibTex]


Thumb xl a fully toc
A fully dense and globally consistent 3D map reconstruction approach for GI tract to enhance therapeutic relevance of the endoscopic capsule robot

Turan, M., Pilavci, Y. Y., Jamiruddin, R., Araujo, H., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.06524, 2017 (article)

Abstract
In the gastrointestinal (GI) tract endoscopy field, ingestible wireless capsule endoscopy is emerging as a novel, minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Since the development of this technology, medical device companies and many research groups have made substantial progress in converting passive capsule endoscopes to robotic active capsule endoscopes with most of the functionality of current active flexible endoscopes. However, robotic capsule endoscopy still has some challenges. In particular, the use of such devices to generate a precise three-dimensional (3D) mapping of the entire inner organ remains an unsolved problem. Such global 3D maps of inner organs would help doctors to detect the location and size of diseased areas more accurately and intuitively, thus permitting more reliable diagnoses. To our knowledge, this paper presents the first complete pipeline for a complete 3D visual map reconstruction of the stomach. The proposed pipeline is modular and includes a preprocessing module, an image registration module, and a final shape-from-shading-based 3D reconstruction module; the 3D map is primarily generated by a combination of image stitching and shape-from-shading techniques, and is updated in a frame-by-frame iterative fashion via capsule motion inside the stomach. A comprehensive quantitative analysis of the proposed 3D reconstruction method is performed using an esophagus gastro duodenoscopy simulator, three different endoscopic cameras, and a 3D optical scanner.

pi

link (url) Project Page [BibTex]


Thumb xl 9780262036436
Mobile Microrobotics

Sitti, M.

Mobile Microrobotics, The MIT Press, Cambridge, MA, 2017 (book)

Abstract
Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.

pi

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]


Thumb xl publications toc
Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper

Dong, X., Sitti, M.

In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 6612-6618, 2017 (inproceedings)

Abstract
Most demonstrated mobile microrobot tasks so far have been achieved via pick-and-placing and dynamic trapping with teleoperation or simple path following algorithms. In our previous work, an untethered magnetic microgripper has been developed which has advanced functions, such as gripping objects. Both teleoperated manipulation in 2D and 3D have been demonstrated. However, it is challenging to control the magnetic microgripper to carry out manipulation tasks, because the grasping of objects so far in the literature relies heavily on teleoperation, which takes several minutes with even a skilled human expert. Here, we propose a new spin-walking locomotion and an automated 2D grasping motion planner for the microgripper, which enables time-efficient automatic grasping of microobjects that has not been achieved yet for untethered microrobots. In its locomotion, the microgripper repeatedly rotates about two principal axes to regulate its pose and move precisely on a surface. The motion planner could plan different motion primitives for grasping and compensate the uncertainties in the motion by learning the uncertainties and planning accordingly. We experimentally demonstrated that, using the proposed method, the microgripper could align to the target pose with error less than 0.1 body length and grip the objects within 40 seconds. Our method could significantly improve the time efficiency of micro-scale manipulation and have potential applications in microassembly and biomedical engineering.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl mobile microrobots for toc
Mobile microrobots for bioengineering applications

Ceylan, H., Giltinan, J., Kozielski, K., Sitti, M.

Lab on a Chip, 17(10):1705-1724, Royal Society of Chemistry, 2017 (article)

Abstract
Untethered micron-scale mobile robots can navigate and non-invasively perform specific tasks inside unprecedented and hard-to-reach inner human body sites and inside enclosed organ-on-a-chip microfluidic devices with live cells. They are aimed to operate robustly and safely in complex physiological environments where they will have a transforming impact in bioengineering and healthcare. Research along this line has already demonstrated significant progress, increasing attention, and high promise over the past several years. The first-generation microrobots, which could deliver therapeutics and other cargo to targeted specific body sites, have just been started to be tested inside small animals toward clinical use. Here, we review frontline advances in design, fabrication, and testing of untethered mobile microrobots for bioengineering applications. We convey the most impactful and recent strategies in actuation, mobility, sensing, and other functional capabilities of mobile microrobots, and discuss their potential advantages and drawbacks to operate inside complex, enclosed and physiologically relevant environments. We lastly draw an outlook to provide directions in the veins of more sophisticated designs and applications, considering biodegradability, immunogenicity, mobility, sensing, and possible medical interventions in complex microenvironments.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image patent
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

US Patent 9,731,422, 2017 (patent)

Abstract
The present invention are methods for fabrication of micro- and/or nano-scale adhesive fibers and their use for movement and manipulation of objects. Further disclosed is a method of manipulating a part by providing a manipulation device with a plurality of fibers, where each fiber has a tip with a flat surface that is parallel to a backing layer, contacting the flat surfaces on an object, moving the object to a new location, then disengaging the tips from the object.

pi

link (url) [BibTex]


no image
Surface tension-driven self-alignment

Mastrangeli, M., Zhou, Q., Sariola, V., Lambert, P.

Soft Matter, 13, pages: 304-327, The Royal Society of Chemistry, 2017 (article)

Abstract
Surface tension-driven self-alignment is a passive and highly-accurate positioning mechanism that can significantly simplify and enhance the construction of advanced microsystems. After years of research{,} demonstrations and developments{,} the surface engineering and manufacturing technology enabling capillary self-alignment has achieved a degree of maturity conducive to a successful transfer to industrial practice. In view of this transition{,} a broad and accessible review of the physics{,} material science and applications of capillary self-alignment is presented. Statics and dynamics of the self-aligning action of deformed liquid bridges are explained through simple models and experiments{,} and all fundamental aspects of surface patterning and conditioning{,} of choice{,} deposition and confinement of liquids{,} and of component feeding and interconnection to substrates are illustrated through relevant applications in micro- and nanotechnology. A final outline addresses remaining challenges and additional extensions envisioned to further spread the use and fully exploit the potential of the technique.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl imagetoc
A Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.05435, 2017 (article)

Abstract
We present a robust deep learning based 6 degrees-of-freedom (DoF) localization system for endoscopic capsule robots. Our system mainly focuses on localization of endoscopic capsule robots inside the GI tract using only visual information captured by a mono camera integrated to the robot. The proposed system is a 23-layer deep convolutional neural network (CNN) that is capable to estimate the pose of the robot in real time using a standard CPU. The dataset for the evaluation of the system was recorded inside a surgical human stomach model with realistic surface texture, softness, and surface liquid properties so that the pre-trained CNN architecture can be transferred confidently into a real endoscopic scenario. An average error of 7.1% and 3.4% for translation and rotation has been obtained, respectively. The results accomplished from the experiments demonstrate that a CNN pre-trained with raw 2D endoscopic images performs accurately inside the GI tract and is robust to various challenges posed by reflection distortions, lens imperfections, vignetting, noise, motion blur, low resolution, and lack of unique landmarks to track.

pi

link (url) Project Page [BibTex]


Thumb xl publications toc
Deep EndoVO: A Recurrent Convolutional Neural Network (RCNN) based Visual Odometry Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

ArXiv e-prints, 2017 (article)

Abstract
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep Recurrent Convolutional Neural Networks (RCNNs) for the visual odometry task, where Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) Project Page [BibTex]

2016


Thumb xl 1 00000
Bioengineered and biohybrid bacteria-based systems for drug delivery

Hosseinidoust, Z., Mostaghaci, B., Yasa, O., Park, B., Singh, A. V., Sitti, M.

Advanced Drug Delivery Reviews, 106, pages: 27-44, Elsevier, November 2016 (article)

Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.

pi

DOI Project Page [BibTex]

2016


DOI Project Page [BibTex]


Thumb xl 07759726
Steering control of a water-running robot using an active tail

Kim, H., Jeong, K., Sitti, M., Seo, T.

In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages: 4945-4950, October 2016 (inproceedings)

Abstract
Many highly dynamic novel mobile robots have been developed being inspired by animals. In this study, we are inspired by a basilisk lizard's ability to run and steer on water surface for a hexapedal robot. The robot has an active tail with a circular plate, which the robot rotates to steer on water. We dynamically modeled the platform and conducted simulations and experiments on steering locomotion with a bang-bang controller. The robot can steer on water by rotating the tail, and the controlled steering locomotion is stable. The dynamic modelling approximates the robot's steering locomotion and the trends of the simulations and experiments are similar, although there are errors between the desired and actual angles. The robot's maneuverability on water can be improved through further research.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl 07293677
A 5-D localization method for a magnetically manipulated untethered robot using a 2-D array of Hall-effect sensors

Son, D., Yim, S., Sitti, M.

IEEE/ASME Transactions on Mechatronics, 21(2):708-716, IEEE, October 2016 (article)

Abstract
This paper introduces a new five-dimensional localization method for an untethered meso-scale magnetic robot, which is manipulated by a computer-controlled electromagnetic system. The developed magnetic localization setup is a two-dimensional array of mono-axial Hall-effect sensors, which measure the perpendicular magnetic fields at their given positions. We introduce two steps for localizing a magnetic robot more accurately. First, the dipole modeled magnetic field of the electromagnet is subtracted from the measured data in order to determine the robot's magnetic field. Secondly, the subtracted magnetic field is twice differentiated in the perpendicular direction of the array, so that the effect of the electromagnetic field in the localization process is minimized. Five variables regarding the position and orientation of the robot are determined by minimizing the error between the measured magnetic field and the modeled magnetic field in an optimization method. The resulting position error is 2.1±0.8 mm and angular error is 6.7±4.3° within the applicable range (5 cm) of magnetic field sensors at 200 Hz. The proposed localization method would be used for the position feedback control of untethered magnetic devices or robots for medical applications in the future.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl nn 2016 05545f 0007
High-Performance Multiresponsive Paper Actuators

Amjadi, M., Sitti, M.

ACS Nano, 10(11):10202-10210, American Chemical Society, October 2016 (article)

Abstract
There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm–2), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm–1 and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

pi

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


Thumb xl publications toc
Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper

Giltinan, J., Diller, E., Sitti, M.

Lab on a Chip, 16(22):4445-4457, Royal Society of Chemistry, October 2016 (article)

Abstract
At the sub-millimeter scale, capillary forces enable robust and reversible adhesion between biological organisms and varied substrates. Current human-engineered mobile untethered micromanipulation systems rely on forces which scale poorly or utilize gripper-part designs that promote manipulation. Capillary forces, alternatively, are dependent upon the surface chemistry (which is scale independent) and contact perimeter, which conforms to the part surface. We report a mobile capillary microgripper that is able to pick and place parts of various materials and geometries, and is thus ideal for microassembly tasks that cannot be accomplished by large tethered manipulators. We achieve the programmable assembly of sub-millimeter parts in an enclosed three-dimensional aqueous environment by creating a capillary bridge between the targeted part and a synthetic, untethered, mobile body. The parts include both hydrophilic and hydrophobic components: hydrogel, kapton, human hair, and biological tissue. The 200 μm untethered system can be controlled with five-degrees-of-freedom and advances progress towards autonomous desktop manufacturing for tissue engineering, complex micromachines, microfluidic devices, and meta-materials.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl 5fc6a94719a2ed61820a6fd031f53c39682a1f157b1c10c35d5d4c88d087d90e
Composition-dependent underwater adhesion of catechol-bearing hydrogels

Wu, H., Sariola, V., Zhao, J., Ding, H., Sitti, M., Bettinger, C. J.

Polymer International, 65(11):1355-1359, John Wiley & Sons, Ltd, September 2016 (article)

Abstract
Interfacial adhesion-mediated transfer printing processes can integrate functional electronic microstructures with polymeric substrates that are bendable and stretchable. Transfer printing has also been extended to catechol-bearing adhesive hydrogels. This study presents indentation adhesion tests between catechol-bearing hydrogel substrates with catechol concentrations varying from 0 to 10% (mol/mol) and thin-film materials commonly used in microelectronic fabrication including polymers, noble metals and oxides. The results indicate that the interfacial adhesion of catechol-bearing hydrogels is positively correlated with the concentration of catechol-bearing monomers as well as the retraction velocity during transfer printing. This study can inform transfer printing processes for microfabricated structures to compliant hydrated substrates such as hygroscopic monomers, mesoporous polymer networks and hydrogels. © 2016 Society of Chemical Industry

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl singh et al 2016 advanced healthcare materials
Bacteria-Driven Particles: Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers (Adv. Healthcare Mater. 18/2016)

Singh, A. V., Sitti, M.

Advanced Healthcare Materials, 5(18):2306-2306, September 2016 (article)

Abstract
On page 2325, Ajay Vikram Singh and Metin Sitti propose a facile surface patterning technique and a specific, strong biotin–streptavidin bonding of bacteria on patterned surfaces to fabricate Janus particles that are propelled by the attached bacteria. Such bacteria-driven Janus microswimmers could be used for future medicine in targeted drug delivery and environmental remediation.

pi

DOI Project Page [BibTex]


Thumb xl publications toc
The effect of temperature and humidity on adhesion of a gecko-inspired adhesive: implications for the natural system

Stark, A. Y., Klittich, M. R., Sitti, M., Niewiarowski, P. H., Dhinojwala, A.

Scientific Reports, 6, pages: 30936, Nature Publishing Group, August 2016 (article)

Abstract
The adhesive system of geckos has inspired hundreds of synthetic adhesives. While this system has been used relentlessly as a source of inspiration, less work has been done in reverse, where synthetics are used to test questions and hypotheses about the natural system. Here we take such an approach. We tested shear adhesion of a mushroom-tipped synthetic gecko adhesive under conditions that produced perplexing results in the natural adhesive system. Synthetic samples were tested at two temperatures (12 °C and 32 °C) and four different humidity levels (30%, 55%, 70%, and 80% RH). Surprisingly, adhesive performance of the synthetic samples matched that of living geckos, suggesting that uncontrolled parameters in the natural system, such as surface chemistry and material changes, may not be as influential in whole-animal performance as previously thought. There was one difference, however, when comparing natural and synthetic adhesive performance. At 12 °C and 80% RH, adhesion of the synthetic structures was lower than expected based on the natural system’s performance. Our approach highlights a unique opportunity for both biologists and material scientists, where new questions and hypotheses can be fueled by joint comparisons of the natural and synthetic systems, ultimately improving knowledge of both.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl 07523675
Targeting of cell mockups using sperm-shaped microrobots in vitro

Khalil, I. S., Tabak, A. F., Hosney, A., Klingner, A., Shalaby, M., Abdel-Kader, R. M., Serry, M., Sitti, M.

In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on, pages: 495-501, July 2016 (inproceedings)

Abstract
Sperm-shaped microrobots are controlled under the influence of weak oscillating magnetic fields (milliTesla range) to selectively target cell mockups (i.e., gas bubbles with average diameter of 200 μm). The sperm-shaped microrobots are fabricated by electrospinning using a solution of polystyrene, dimethylformamide, and iron oxide nanoparticles. These nanoparticles are concentrated within the head of the microrobot, and hence enable directional control along external magnetic fields. The magnetic dipole moment of the microrobot is characterized (using the flip-time technique) to be 1.4×10-11 A.m2, at magnetic field of 28 mT. In addition, the morphology of the microrobot is characterized using Scanning Electron Microscopy images. The characterized parameters and morphology are used in the simulation of the locomotion mechanism of the microrobot to prove that its motion depends on breaking the time-reversal symmetry, rather than pulling with the magnetic field gradient. We experimentally demonstrate that the microrobot can controllably follow S-shaped, U-shaped, and square paths, and selectively target the cell mockups using image guidance and under the influence of the oscillating magnetic fields.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl image toc
Analysis of the magnetic torque on a tilted permanent magnet for drug delivery in capsule robots

Munoz, F., Alici, G., Zhou, H., Li, W., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2016 IEEE International Conference on, pages: 1386-1391, July 2016 (inproceedings)

Abstract
In this paper, we present the analysis of the torque transmitted to a tilted permanent magnet that is to be embedded in a capsule robot to achieve targeted drug delivery. This analysis is carried out by using an analytical model and experimental results for a small cubic permanent magnet that is driven by an external magnetic system made of an array of arc-shaped permanent magnets (ASMs). Our experimental results, which are in agreement with the analytical results, show that the cubic permanent magnet can safely be actuated for inclinations lower than 75° without having to make positional adjustments in the external magnetic system. We have found that with further inclinations, the cubic permanent magnet to be embedded in a drug delivery mechanism may stall. When it stalls, the external magnetic system's position and orientation would have to be adjusted to actuate the cubic permanent magnet and the drug release mechanism. This analysis of the transmitted torque is helpful for the development of real-time control strategies for magnetically articulated devices.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl imagetoc
Magnetic propulsion of robotic sperms at low-Reynolds number

Khalil, I. S., Fatih Tabak, A., Klingner, A., Sitti, M.

Applied Physics Letters, 109(3):033701, AIP Publishing, July 2016 (article)

Abstract
We investigate the microswimming behaviour of robotic sperms in viscous fluids. These robotic sperms are fabricated from polystyrene dissolved in dimethyl formamide and iron-oxide nanoparticles. This composition allows the nanoparticles to be concentrated within the bead of the robotic sperm and provide magnetic dipole, whereas the flexibility of the ultra-thin tail enables flagellated locomotion using magnetic fields in millitesla range. We show that these robotic sperms have similar morphology and swimming behaviour to those of sperm cells. Moreover, we show experimentally that our robotic sperms swim controllably at an average speed of approximately one body length per second (around 125 μm s−1), and they are relatively faster than the microswimmers that depend on planar wave propulsion in low-Reynolds number fluids.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl 0278364915583539
Six-degree-of-freedom magnetic actuation for wireless microrobotics

Diller, E., Giltinan, J., Lum, G. Z., Ye, Z., Sitti, M.

The International Journal of Robotics Research, 35(1-3):114-128, SAGE Publications Sage UK: London, England, June 2016 (article)

Abstract
Existing remotely actuated magnetic microrobots exhibit a maximum of only five-degree-of-freedom (DOF) actuation, as creation of a driving torque about the microrobot magnetization axis is not achievable. This lack of full orientation control limits the effectiveness of existing microrobots for precision tasks of object manipulation and orientation for advanced medical, biological and micromanufacturing applications. This paper presents a magnetic actuation method that allows remotely powered microrobots to achieve full six-DOF actuation by considering the case of a non-uniform magnetization profile within the microrobot body. This non-uniform magnetization allows for additional rigid-body torques to be induced from magnetic forces via a moment arm. A general analytical model presents the working principle for continuous and discrete magnetization profiles, which is applied to permanent or non-permanent (soft) magnet bodies. Several discrete-magnetization designs are also presented which possess reduced coupling between magnetic forces and induced rigid-body torques. Design guidelines are introduced which can be followed to ensure that a magnetic microrobot design is capable of six-DOF actuation. A simple permanent-magnet prototype is fabricated and used to quantitatively demonstrate the accuracy of the analytical model in a constrained-DOF environment and qualitatively for free motion in a viscous liquid three-dimensional environment. Results show that desired forces and torques can be created with high precision and limited parasitic actuation, allowing for full six-DOF actuation using limited feedback control

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image patent
System and method to magnetically actuate a capsule endoscopic robot for diagnosis and treatment

Sitti, M., Yim, S.

May 2016, US Patent 9,445,711 (patent)

Abstract
Present invention describes a swallowable device with a soft, compliant exterior, whose shape can be changed through the use of magnetic fields, and which can be locomoted in a rolling motion through magnetic control from the exterior of the patient. The present invention could be used for a variety of medical applications inside the GI tract including but not limited to drug delivery, biopsy, heat cauterization, pH sensing, biochemical sensing, micro-surgery, and active imaging.

pi

link (url) [BibTex]


Thumb xl ye et al 2016 advanced materials
Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016)

Ye, Z., Lum, G. Z., Song, S., Rich, S., Sitti, M.

Advanced Materials, 28(25):5087-5087, May 2016 (article)

Abstract
Gallium exhibits highly reversible and switchable adhesion when it undergoes a solid–liquid phase transition. The robustness of gallium is notable as it exhibits strong performance on a wide range of smooth and rough surfaces, under both dry and wet conditions. Gallium may therefore find numerous applications in transfer printing, robotics, electronic packaging, and biomedicine.

pi

DOI [BibTex]


Thumb xl singh et al 2016 advanced healthcare materials
Patterned and Specific Attachment of Bacteria on Biohybrid Bacteria-Driven Microswimmers

Singh, A. V., Sitti, M.

Advanced Healthcare Materials, 5(18):2325-2331, May 2016 (article)

Abstract
A surface patterning technique and a specific and strong biotin–streptavidin bonding of bacteria on patterned surfaces are proposed to fabricate Janus particles that are propelled by the attached bacteria. Bacteria-driven Janus microswimmers with diameters larger than 3 μm show enhanced mean propulsion speed. Such microswimmers could be used for future applications such as targeted drug delivery and environmental remediation.

pi

DOI [BibTex]


Thumb xl pnas 2016 lum 1608193113 2
Shape-programmable magnetic soft matter

Lum, G. Z., Ye, Z., Dong, X., Marvi, H., Erin, O., Hu, W., Sitti, M.

Proceedings of the National Academy of Sciences, 113(41):E6007–E6015, National Acad Sciences, May 2016 (article)

Abstract
Shape-programmable matter is a class of active materials whose geometry can be controlled to potentially achieve mechanical functionalities beyond those of traditional machines. Among these materials, magnetically actuated matter is particularly promising for achieving complex time-varying shapes at small scale (overall dimensions smaller than 1 cm). However, previous work can only program these materials for limited applications, as they rely solely on human intuition to approximate the required magnetization profile and actuating magnetic fields for their materials. Here, we propose a universal programming methodology that can automatically generate the required magnetization profile and actuating fields for soft matter to achieve new time-varying shapes. The universality of the proposed method can therefore inspire a vast number of miniature soft devices that are critical in robotics, smart engineering surfaces and materials, and biomedical devices. Our proposed method includes theoretical formulations, computational strategies, and fabrication procedures for programming magnetic soft matter. The presented theory and computational method are universal for programming 2D or 3D time-varying shapes, whereas the fabrication technique is generic only for creating planar beams. Based on the proposed programming method, we created a jellyfish-like robot, a spermatozoid-like undulating swimmer, and an artificial cilium that could mimic the complex beating patterns of its biological counterpart.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl 07487340
Sperm-shaped magnetic microrobots: Fabrication using electrospinning, modeling, and characterization

Khalil, I. S., Tabak, A. F., Hosney, A., Mohamed, A., Klingner, A., Ghoneima, M., Sitti, M.

In Robotics and Automation (ICRA), 2016 IEEE International Conference on, pages: 1939-1944, May 2016 (inproceedings)

Abstract
We use electrospinning to fabricate sperm-shaped magnetic microrobots with a range of diameters from 50 μm to 500 μm. The variables of the electrospinning operation (voltage, concentration of the solution, dynamic viscosity, and distance between the syringe needle and collector) to achieve beading effect are determined. This beading effect allows us to fabricate microrobots with similar morphology to that of sperm cells. The bead and the ultra-fine fiber resemble the morphology of the head and tail of the sperm cell, respectively. We incorporate iron oxide nanoparticles to the head of the sperm-shaped microrobot to provide a magnetic dipole moment. This dipole enables directional control under the influence of external magnetic fields. We also apply weak (less than 2 mT) oscillating magnetic fields to exert a magnetic torque on the magnetic head, and generate planar flagellar waves and flagellated swim. The average speed of the sperm-shaped microrobot is calculated to be 0.5 body lengths per second and 1 body lengths per second at frequencies of 5 Hz and 10 Hz, respectively. We also develop a model of the microrobot using elastohydrodynamics approach and Timoshenko-Rayleigh beam theory, and find good agreement with the experimental results.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl inflateble robots
Inflated soft actuators with reversible stable deformations

Hines, L., Petersen, K., Sitti, M.

Advanced Materials, 28(19):3690-3696, March 2016 (article)

Abstract
Most soft robotic systems are currently dependent on bulky compressors or pumps. A soft actuation method is presented combining hyperelastic membranes and dielectric elastomer actuators to switch between stable deformations of sealed chambers. This method is capable of large repeatable deformations, and has a number of stable states proportional to the number of actuatable membranes in the chamber.

pi

DOI Project Page [BibTex]


Thumb xl publications toc
Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers

Zhuang, J., Sitti, M.

Scientific reports, 6, pages: 32135, Nature Publishing Group, March 2016 (article)

Abstract
In this study, in a bio-hybrid microswimmer system driven by multiple Serratia marcescens bacteria, we quantify the chemotactic drift of a large number of microswimmers towards L-serine and elucidate the associated collective chemotaxis behavior by statistical analysis of over a thousand swimming trajectories of the microswimmers. The results show that the microswimmers have a strong heading preference for moving up the L-serine gradient, while their speed does not change considerably when moving up and down the gradient; therefore, the heading bias constitutes the major factor that produces the chemotactic drift. The heading direction of a microswimmer is found to be significantly more persistent when it moves up the L-serine gradient than when it travels down the gradient; this effect causes the apparent heading preference of the microswimmers and is the crucial reason that enables the seemingly cooperative chemotaxis of multiple bacteria on a microswimmer. In addition, we find that their chemotactic drift velocity increases superquadratically with their mean swimming speed, suggesting that chemotaxis of bio-hybrid microsystems can be enhanced by designing and building faster microswimmers. Such bio-hybrid microswimmers with chemotactic steering capability may find future applications in targeted drug delivery, bioengineering, and lab-on-a-chip devices.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl publications toc
Targeted drug delivery and imaging using mobile milli/microrobots: A promising future towards theranostic pharmaceutical design

Vikram Singh, A., Sitti, M.

Current Pharmaceutical Design, 22(11):1418-1428, Bentham Science Publishers, March 2016 (article)

Abstract
Miniature untethered medical robots have been receiving growing attention due to technological advances in microactuation, microsensors, and microfabrication and have significant potential to reduce the invasiveness and improve the accessibility of medical devices into unprecedented small spaces inside the human body. In this review, we discuss therapeutic and diagnostic applications of untethered medical microrobots. Wirelessly controlled milli/microrobots with integrated sensors are revolutionizing micromanipulation based medical interventions and are enabling doctors to perform minimally invasive procedures not possible before. 3D fabrication technologies enabling milli/microrobot fabrication at the single cell scale are empowering high-resolution visual imaging and in vivo manipulation capabilities. Swallowable millirobots and injectabale ocular microrobots allow the gastric ulcer imaging, and performance of vitreoretinal microsurgery at previously inaccessible ocular sites. Many invasive excision and incision based diagnostic biopsy, prostrate, and nephrolgical procedures can be performed minimally or almost noninvasively due to recent advancements in microrobotic technology. Advances in biohybrid microrobot systems are pushing microrobotic systems even smaller, using biological cells as on-board microactuators and microsensors using the chemical energy. Such microrobotic systems could be used for local targeted delivery of imaging contrast agents, drugs, genes, and mRNA, minimally invasive surgery, and cell micromanipulation in the near future.

pi

link (url) [BibTex]


Thumb xl publications toc
Parallel microcracks-based ultrasensitive and highly stretchable strain sensors

Amjadi, M., Turan, M., Clementson, C. P., Sitti, M.

ACS Applied Materials \& Interfaces, 8(8):5618-5626, American Chemical Society, Febuary 2016 (article)

Abstract
There is an increasing demand for flexible, skin-attachable, and wearable strain sensors due to their various potential applications. However, achieving strain sensors with both high sensitivity and high stretchability is still a grand challenge. Here, we propose highly sensitive and stretchable strain sensors based on the reversible microcrack formation in composite thin films. Controllable parallel microcracks are generated in graphite thin films coated on elastomer films. Sensors made of graphite thin films with short microcracks possess high gauge factors (maximum value of 522.6) and stretchability (ε ≥ 50%), whereas sensors with long microcracks show ultrahigh sensitivity (maximum value of 11 344) with limited stretchability (ε ≤ 50%). We demonstrate the high performance strain sensing of our sensors in both small and large strain sensing applications such as human physiological activity recognition, human body large motion capturing, vibration detection, pressure sensing, and soft robotics.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl amjadi et al 2016 advanced functional materials
Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review

Amjadi, M., Kyung, K., Park, I., Sitti, M.

Advanced Functional Materials, 26, pages: 1678-1698, Febuary 2016 (article)

Abstract
There is a growing demand for flexible and soft electronic devices. In particular, stretchable, skin-mountable, and wearable strain sensors are needed for several potential applications including personalized health-monitoring, human motion detection, human-machine interfaces, soft robotics, and so forth. This Feature Article presents recent advancements in the development of flexible and stretchable strain sensors. The article shows that highly stretchable strain sensors are successfully being developed by new mechanisms such as disconnection between overlapped nanomaterials, crack propagation in thin films, and tunneling effect, different from traditional strain sensing mechanisms. Strain sensing performances of recently reported strain sensors are comprehensively studied and discussed, showing that appropriate choice of composite structures as well as suitable interaction between functional nanomaterials and polymers are essential for the high performance strain sensing. Next, simulation results of piezoresistivity of stretchable strain sensors by computational models are reported. Finally, potential applications of flexible strain sensors are described. This survey reveals that flexible, skin-mountable, and wearable strain sensors have potential in diverse applications while several grand challenges have to be still overcome.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image patent
Remotely addressable magnetic composite micro-actuators

Sitti, M., Diller, E., Miyashita, S.

Febuary 2016, US Patent App. 15/018,008 (patent)

Abstract
The present invention describes methods to fabricate actuators that can be remotely controlled in an addressable manner, and methods to provide remote control such micro-actuators. The actuators are composites of two permanent magnet materials, one of which is has high coercivity, and the other of which switches magnetization direction by applied fields. By switching the second material's magnetization direction, the two magnets either work together or cancel each other, resulting in distinct “on” and “off” behavior of the devices. The device can be switched “on” or “off” remotely using a field pulse of short duration.

pi

[BibTex]

[BibTex]


Thumb xl toc image patent
Remotely addressable magnetic composite micro-actuators

Sitti, M., Diller, E., Miyashita, S.

Febuary 2016, US Patent 9,281,112 (patent)

Abstract
The present invention describes methods to fabricate actuators that can be remotely controlled in an addressable manner, and methods to provide remote control such micro-actuators. The actuators are composites of two permanent magnet materials, one of which is has high coercivity, and the other of which switches magnetization direction by applied fields. By switching the second material's magnetization direction, the two magnets either work together or cancel each other, resulting in distinct “on” and “off” behavior of the devices. The device can be switched “on” or “off” remotely using a field pulse of short duration.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl b 07384529
Size optimization of a magnetic system for drug delivery with capsule robots

Munoz, F., Alici, G., Li, W., Sitti, M.

IEEE Transactions on Magnetics, 52(5):1-11, IEEE, January 2016 (article)

Abstract
In this paper, we present a methodology for the size optimization of an external magnetic system made of arc-shaped permanent magnets (ASMs). This magnetic system is able to remotely actuate a drug-release module embedded in a prototype of a capsule robot. The optimization of the magnetic system is carried out by using an accurate analytical model that is valid for any arbitrary dimensions of the ASMs. By using this analytical model, we perform parametric studies and conduct a statistical analysis [analysis of variance (ANOVA)] to investigate efficient ways to distribute the volume of the ASMs so that the dimensions and volume of the magnetic system are minimized while optimal flux densities and magnetic torques are obtained to actuate the drug delivery system (DDS). The ANOVA results, at 5% significance level, indicate that changes in the angular width followed by changes in the length of the ASMs have the highest impact on the magnetic linkage. Furthermore, our experimental results, which are in agreement with the analytical results, show that the size optimization of the magnetic system is effective for the actuation of the DDS in capsule robots.

pi

DOI [BibTex]

DOI [BibTex]


no image
Extrapolation and learning equations

Martius, G., Lampert, C. H.

2016, arXiv preprint \url{https://arxiv.org/abs/1610.02995} (misc)

al

Project Page [BibTex]

Project Page [BibTex]

2015


Thumb xl screen shot 2015 09 09 at 12.09.20
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

pi

DOI Project Page [BibTex]

2015


DOI Project Page [BibTex]


Thumb xl 07353111
Compliant wing design for a flapping wing micro air vehicle

Colmenares, D., Kania, R., Zhang, W., Sitti, M.

In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages: 32-39, September 2015 (inproceedings)

Abstract
In this work, we examine several wing designs for a motor-driven, flapping-wing micro air vehicle capable of liftoff. The full system consists of two wings independently driven by geared pager motors that include a spring in parallel with the output shaft. The linear transmission allows for resonant operation, while control is achieved by direct drive of the wing angle. Wings used in previous work were chosen to be fully rigid for simplicity of modeling and fabrication. However, biological wings are highly flexible and other micro air vehicles have successfully utilized flexible wing structures for specialized tasks. The goal of our study is to determine if wing flexibility can be generally used to increase wing performance. Two approaches to lift improvement using flexible wings are explored, resonance of the wing cantilever structure and dynamic wing twisting. We design and test several wings that are compared using different figures of merit. A twisted design improved lift per power by 73.6% and maximum lift production by 53.2% compared to the original rigid design. Wing twist is then modeled in order to propose optimal wing twist profiles that can maximize either wing efficiency or lift production.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image patent
Methods of forming dry adhesive structures

Sitti, M., Murphy, M., Aksak, B.

September 2015, US Patent 9,120,953 (patent)

Abstract
Methods of forming dry adhesives including a method of making a dry adhesive including applying a liquid polymer to the second end of the stem, molding the liquid polymer on the stem in a mold, wherein the mold includes a recess having a cross-sectional area that is less than a cross-sectional area of the second end of the stem, curing the liquid polymer in the mold to form a tip at the second end of the stem, wherein the tip includes a second layer stem; corresponding to the recess in the mold, and removing the tip from the mold after the liquid polymer cures.

pi

[BibTex]

[BibTex]


no image
Millimeter-scale magnetic swimmers using elastomeric undulations

Zhang, J., Diller, E.

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1706-1711, September 2015 (inproceedings)

Abstract
This paper presents a new soft-bodied millimeterscale swimmer actuated by rotating uniform magnetic fields. The proposed swimmer moves through internal undulatory deformations, resulting from a magnetization profile programmed into its body. To understand the motion of the swimmer, a mathematical model is developed to describe the general relationship between the deflection of a flexible strip and its magnetization profile. As a special case, the situation of the swimmer on the water surface is analyzed and predictions made by the model are experimentally verified. Experimental results show the controllability of the proposed swimmer under a computer vision-based closed-loop controller. The swimmers have nominal dimensions of 1.5×4.9×0.06 mm and a top speed of 50 mm/s (10 body lengths per second). Waypoint following and multiagent control are demonstrated for swimmers constrained at the air-water interface and underwater swimming is also shown, suggesting the promising potential of this type of swimmer in biomedical and microfluidic applications.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl publications toc
Experimental investigation of optimal adhesion of mushroomlike elastomer microfibrillar adhesives

Marvi, H., Song, S., Sitti, M.

Langmuir, 31(37):10119-10124, American Chemical Society, August 2015 (article)

Abstract
Optimal fiber designs for the maximal pull-off force have been indispensable for increasing the attachment performance of recently introduced gecko-inspired reversible micro/nanofibrillar adhesives. There are several theoretical studies on such optimal designs; however, due to the lack of three-dimensional (3D) fabrication techniques that can fabricate such optimal designs in 3D, there have not been many experimental investigations on this challenge. In this study, we benefitted from recent advances in two-photon lithography techniques to fabricate mushroomlike polyurethane elastomer fibers with different aspect ratios of tip to stalk diameter (β) and tip wedge angles (θ) to investigate the effect of these two parameters on the pull-off force. We found similar trends to those predicted theoretically. We found that β has an impact on the slope of the force-displacement curve while both β and θ play a role in the stress distribution and crack propagation. We found that these effects are coupled and the optimal set of parameters also depends on the fiber material. This is the first experimental verification of such optimal designs proposed for mushroomlike microfibers. This experimental approach could be used to evaluate a wide range of complex microstructured adhesive designs suggested in the literature and optimize them.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image patent
Micro-fiber arrays with tip coating and transfer method for preparing same

Sitti, M., Washburn, N. R., Glass, P. S., Chung, H.

July 2015, US Patent 9,079,215 (patent)

Abstract
Present invention describes a patterned and coated micro- and nano-scale fibers elastomeric material for enhanced adhesion in wet or dry environments. A multi-step fabrication process including optical lithography, micromolding, polymer synthesis, dipping, stamping, and photopolymerization is described to produce uniform arrays of micron-scale fibers with mushroom-shaped tips coated with a thin layer of an intrinsically adhesive synthetic polymer, such as lightly crosslinked p(DMA-co-MEA).

pi

[BibTex]

[BibTex]


Thumb xl publications toc
pH-taxis of biohybrid microsystems

Zhuang, J., Carlsen, R. W., Sitti, M.

Scientific reports, 5, Nature Publishing Group, June 2015 (article)

Abstract
The last decade has seen an increasing number of studies developing bacteria and other cell-integrated biohybrid microsystems. However, the highly stochastic motion of these microsystems severely limits their potential use. Here, we present a method that exploits the pH sensing of flagellated bacteria to realize robust drift control of multi-bacteria propelled microrobots. Under three specifically configured pH gradients, we demonstrate that the microrobots exhibit both unidirectional and bidirectional pH-tactic behaviors, which are also observed in free-swimming bacteria. From trajectory analysis, we find that the swimming direction and speed biases are two major factors that contribute to their tactic drift motion. The motion analysis of microrobots also sheds light on the propulsion dynamics of the flagellated bacteria as bioactuators. It is expected that similar driving mechanisms are shared among pH-taxis, chemotaxis, and thermotaxis. By identifying the mechanism that drives the tactic behavior of bacteria-propelled microsystems, this study opens up an avenue towards improving the control of biohybrid microsystems. Furthermore, assuming that it is possible to tune the preferred pH of bioactuators by genetic engineering, these biohybrid microsystems could potentially be applied to sense the pH gradient induced by cancerous cells in stagnant fluids inside human body and realize targeted drug delivery.

pi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl publications toc
Fiberbot: A miniature crawling robot using a directional fibrillar pad

Han, Y., Marvi, H., Sitti, M.

In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages: 3122-3127, May 2015 (inproceedings)

Abstract
Vibration-driven locomotion has been widely used for crawling robot studies. Such robots usually have a vibration motor as the actuator and a fibrillar structure for providing directional friction on the substrate. However, there has not been any studies about the effect of fiber structure on robot crawling performance. In this paper, we develop Fiberbot, a custom made mini vibration robot, for studying the effect of fiber angle on robot velocity, steering, and climbing performance. It is known that the friction force with and against fibers depends on the fiber angle. Thus, we first present a new fabrication method for making millimeter scale fibers at a wide range of angles. We then show that using 30° angle fibers that have the highest friction anisotropy (ratio of backward to forward friction force) among the other fibers we fabricated in this study, Fiberbot speed on glass increases to 13.8±0.4 cm/s (compared to ν = 0.6±0.1 cm/s using vertical fibers). We also demonstrate that the locomotion direction of Fiberbot depends on the tilting direction of fibers and we can steer the robot by rotating the fiber pad. Fiberbot could also climb on glass at inclinations of up to 10° when equipped with fibers of high friction anisotropy. We show that adding a rigid tail to the robot it can climb on glass at 25° inclines. Moreover, the robot is able to crawl on rough surfaces such as wood (ν = 10.0±0.2 cm/s using 30° fiber pad). Fiberbot, a low-cost vibration robot equipped with a custom-designed fiber pad with steering and climbing capabilities could be used for studies on collective behavior on a wide range of topographies as well as search and exploratory missions.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Platform design and tethered flight of a motor-driven flapping-wing system

Hines, L., Colmenares, D., Sitti, M.

In Robotics and Automation (ICRA), 2015 IEEE International Conference on, pages: 5838-5845, May 2015 (inproceedings)

Abstract
In this work, we examine two design modifications to a tethered motor-driven flapping-wing system. Previously, we had demonstrated a simple mechanism utilizing a linear transmission for resonant operation and direct drive of the wing flapping angle for control. The initial two-wing system had a weight of 2.7 grams and a maximum lift-to-weight ratio of 1.4. While capable of vertical takeoff, in open-loop flight it demonstrated instability and pitch oscillations at the wing flapping frequency, leading to flight times of only a few wing strokes. Here the effect of vertical wing offset as well as an alternative multi-wing layout is investigated and experimentally tested with newly constructed prototypes. With only a change in vertical wing offset, stable open-loop flight of the two-wing flapping system is shown to be theoretically possible, but difficult to achieve with our current design and operating parameters. Both of the new two and four-wing systems, however, prove capable of flying to the end of the tether, with the four-wing system prototype eliminating disruptive wing beat oscillations.

pi

DOI [BibTex]

DOI [BibTex]