Header logo is


2014


no image
The design of microfibers with mushroom-shaped tips for optimal adhesion

Sitti, M., Aksak, B.

February 2014, US Patent App. 14/766,561 (misc)

pi

[BibTex]

2014


[BibTex]


Thumb xl fig1
3D nanofabrication on complex seed shapes using glancing angle deposition

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), pages: 437-440, January 2014 (inproceedings)

Abstract
Three-dimensional (3D) fabrication techniques promise new device architectures and enable the integration of more components, but fabricating 3D nanostructures for device applications remains challenging. Recently, we have performed glancing angle deposition (GLAD) upon a nanoscale hexagonal seed array to create a variety of 3D nanoscale objects including multicomponent rods, helices, and zigzags [1]. Here, in an effort to generalize our technique, we present a step-by-step approach to grow 3D nanostructures on more complex nanoseed shapes and configurations than before. This approach allows us to create 3D nanostructures on nanoseeds regardless of seed sizes and shapes.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Circular polarization interferometry: circularly polarized modes of cholesteric liquid crystals

Sanchez-Castillo, A., Eslami, S., Giesselmann, F., Fischer, P.

OPTICS EXPRESS, 22(25):31227-31236, 2014 (article)

Abstract
We describe a novel polarization interferometer which permits the determination of the refractive indices for circularly-polarized light. It is based on a Jamin-Lebedeff interferometer, modified with waveplates, and permits us to experimentally determine the refractive indices n(L) and n(R) of the respectively left- and right-circularly polarized modes in a cholesteric liquid crystal. Whereas optical rotation measurements only determine the circular birefringence, i.e. the difference (n(L) - n(R)), the interferometer also permits the determination of their absolute values. We report refractive indices of a cholesteric liquid crystal in the region of selective (Bragg) reflection as a function of temperature. (C) 2014 Optical Society of America

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Self-Propelling Nanomotors in the Presence of Strong Brownian Forces

Lee, T., Alarcon-Correa, M., Miksch, C., Hahn, K., Gibbs, J. G., Fischer, P.

NANO LETTERS, 14(5):2407-2412, 2014 (article)

Abstract
Motility in living systems is due to an array of complex molecular nanomotors that are essential for the function and survival of cells. These protein nanomotors operate not only despite of but also because of stochastic forces. Artificial means of realizing motility rely on local concentration or temperature gradients that are established across a particle, resulting in slip velocities at the particle surface and thus motion of the particle relative to the fluid. However, it remains unclear if these artificial motors can function at the smallest of scales, where Brownian motion dominates and no actively propelled living organisms can be found. Recently, the first reports have appeared suggesting that the swimming mechanisms of artificial structures may also apply to enzymes that are catalytically active. Here we report a scheme to realize artificial Janus nanoparticles (JNPs) with an overall size that is comparable to that of some enzymes similar to 30 nm. Our JNPs can catalyze the decomposition of hydrogen peroxide to water and oxygen and thus actively move by self-electrophoresis. Geometric anisotropy of the Pt-Au Janus nanoparticles permits the simultaneous observation of their translational and rotational motion by dynamic light scattering. While their dynamics is strongly influenced by Brownian rotation, the artificial Janus nanomotors show bursts of linear ballistic motion resulting in enhanced diffusion.

pf

DOI [BibTex]


Thumb xl toc image
Shape control in wafer-based aperiodic 3D nanostructures

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

NANOTECHNOLOGY, 25(23), 2014, Cover article. (article)

Abstract
Controlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate.

Cover article.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Active Microrheology of the Vitreous of the Eye applied to Nanorobot Propulsion

Qiu, T., Schamel, D., Mark, A. G., Fischer, P.

In 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), pages: 3801-3806, IEEE International Conference on Robotics and Automation ICRA, 2014, Best Automation Paper Award – Finalist. (inproceedings)

Abstract
Biomedical applications of micro or nanorobots require active movement through complex biological fluids. These are generally non-Newtonian (viscoelastic) fluids that are characterized by complicated networks of macromolecules that have size-dependent rheological properties. It has been suggested that an untethered microrobot could assist in retinal surgical procedures. To do this it must navigate the vitreous humor, a hydrated double network of collagen fibrils and high molecular-weight, polyanionic hyaluronan macromolecules. Here, we examine the characteristic size that potential robots must have to traverse vitreous relatively unhindered. We have constructed magnetic tweezers that provide a large gradient of up to 320 T/m to pull sub-micron paramagnetic beads through biological fluids. A novel two-step electrical discharge machining (EDM) approach is used to construct the tips of the magnetic tweezers with a resolution of 30 mu m and high aspect ratio of similar to 17:1 that restricts the magnetic field gradient to the plane of observation. We report measurements on porcine vitreous. In agreement with structural data and passive Brownian diffusion studies we find that the unhindered active propulsion through the eye calls for nanorobots with cross-sections of less than 500 nm.

Best Automation Paper Award – Finalist.

pf

[BibTex]

[BibTex]


Thumb xl pictire scallop
Swimming by reciprocal motion at low Reynolds number

Qiu, T., Lee, T., Mark, A. G., Morozov, K. I., Muenster, R., Mierka, O., Turek, S., Leshansky, A. M., Fischer, P.

NATURE COMMUNICATIONS, 5, 2014, Max Planck Press Release. (article)

Abstract
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell's scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric `micro-scallop', a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.

Max Planck Press Release.

pf

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]

Video - A Swimming Micro-Scallop Video - Winner of the Micro-robotic Design Challenge in Hamlyn Symposium on Medical Robotics DOI [BibTex]


Thumb xl toc image
Nanohelices by shadow growth

Gibbs, J. G., Mark, A. G., Lee, T., Eslami, S., Schamel, D., Fischer, P.

NANOSCALE, 6(16):9457-9466, 2014 (article)

Abstract
The helix has remarkable qualities and is prevalent in many fields including mathematics, physics, chemistry, and biology. This shape, which is chiral by nature, is ubiquitous in biology with perhaps the most famous example being DNA. Other naturally occurring helices are common at the nanoscale in the form of protein secondary structures and in various macromolecules. Nanoscale helices exhibit a wide range of interesting mechanical, optical, and electrical properties which can be intentionally engineered into the structure by choosing the correct morphology and material. As technology advances, these fabrication parameters can be fine-tuned and matched to the application of interest. Herein, we focus on the fabrication and properties of nanohelices grown by a dynamic shadowing growth method combined with fast wafer-scale substrate patterning which has a number of distinct advantages. We review the fabrication methodology and provide several examples that illustrate the generality and utility of nanohelices shadow-grown on nanopatterns.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


Thumb xl publications toccontinuously distributed
Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming

Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M. R., Sitti, M.

Applied Physics Letters, 104(17):174101, AIP, 2014 (article)

Abstract
We have developed a millimeter-scale magnetically driven swimming robot for untethered motion at mid to low Reynolds numbers. The robot is propelled by continuous undulatory deformation, which is enabled by the distributed magnetization profile of a flexible sheet. We demonstrate control of a prototype device and measure deformation and speed as a function of magnetic field strength and frequency. Experimental results are compared with simple magnetoelastic and fluid propulsion models. The presented mechanism provides an efficient remote actuation method at the millimeter scale that may be suitable for further scaling down in size for microrobotics applications in biotechnology and healthcare

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Chiral Nanomagnets

Eslami, S., Gibbs, J. G., Rechkemmer, Y., van Slageren, J., Alarcon-Correa, M., Lee, T., Mark, A. G., Rikken, G. L. J. A., Fischer, P.

ACS PHOTONICS, 1(11):1231-1236, 2014 (article)

Abstract
We report on the enhanced optical properties of chiral magnetic nanohelices with critical dimensions comparable to the ferromagnetic domain size. They are shown to be ferromagnetic at room temperature, have defined chirality, and exhibit large optical activity in the visible as verified by electron microscopy, superconducting quantum interference device (SQUID) magnetometry, natural circular dichroism (NCD), and magnetic circular dichroism (MCD) measurements. The structures exhibit magneto-chiral dichroism (MChD), which directly demonstrates coupling between their structural chirality and magnetism. A chiral nickel (Ni) film consisting of an array of nanohelices similar to 100 nm in length exhibits an MChD anisotropy factor g(MChD) approximate to 10(-4) T-1 at room temperature in a saturation field of similar to 0.2 T, permitting polarization-independent control of the film's absorption properties through magnetic field modulation. This is also the first report of MChD in a material with structural chirality on the order of the wavelength of light, and therefore the Ni nanohelix array is a metamaterial with magnetochiral properties that can be tailored through a dynamic deposition process.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Wireless powering of e-swimmers

Roche, J., Carrara, S., Sanchez, J., Lannelongue, J., Loget, G., Bouffier, L., Fischer, P., Kuhn, A.

SCIENTIFIC REPORTS, 4, 2014 (article)

Abstract
Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures

Czugala, M., O’Connell, C., Blin, C., Fischer, P., Fraser, K. J., Benito-Lopez, F., Diamond, D.

SENSORS AND ACTUATORS B-CHEMICAL, 194, pages: 105-113, 2014 (article)

Abstract
Photoresponsive N-isopropylacrylamide ionogel microstructures are presented in this study. These ionogels are synthesised using phosphonium based room temperature ionic liquids, together with the photochromic compound benzospiropyran. The microstructures can be actuated using light irradiation, facilitating non-contact and non-invasive operation. For the first time, the characterisation of the swelling and shrinking behaviour of several photopatterned ionogel microstructures is presented and the influence of surface-area-to-volume ratio on the swelling kinetics is evaluated. It was found that the swelling and shrinking behaviour of the ionogels is strongly dependent on the nature of the ionic liquid. In particular, the {[}P-6,P-6,P-6,P-14]{[}NTf2] ionogel exhibits the greatest degree of swelling, reaching up to 180\% of its initial size, and the fastest shrinkage rate (k(sh) = 29 +/- 4 x 10(-2) s(-1)). (C) 2014 Elsevier B. V. All rights reserved.

pf

DOI [BibTex]

DOI [BibTex]


no image
Biopsy using a Magnetic Capsule Endoscope Carrying, Releasing and Retrieving Untethered Micro-Grippers

Yim, S., Gultepe, E., Gracias, D. H., Sitti, M.

IEEE Trans. on Biomedical Engineering, 61(2):513-521, IEEE, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Investigation of tip current and normal force measured simultaneously during local oxidation of titanium using dual-mode scanning probe microscopy

Ozcan, O., Hu, W., Sitti, M., Bain, J., Ricketts, D.

IET Micro \& Nano Letters, 9(5):332-336, IET, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Three-dimensional robotic manipulation and transport of micro-scale objects by a magnetically driven capillary micro-gripper

Giltinan, J., Diller, E., Mayda, C., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2077-2082, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
SoftCubes: Stretchable and self-assembling three-dimensional soft modular matter

Yim, S., Sitti, M.

The International Journal of Robotics Research, 33(8):1083-1097, SAGE Publications Sage UK: London, England, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Bio-Hybrid Cell-Based Actuators for Microsystems

Carlsen, Rika Wright, Sitti, Metin

Small, 10(19):3831-3851, 2014 (article)

Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

pi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Addressing of Micro-robot Teams and Non-contact Micro-manipulation

Diller, E., Ye, Z., Giltinan, J., Sitti, M.

In Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, pages: 28-38, Springer Berlin Heidelberg, 2014 (incollection)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Staying sticky: contact self-cleaning of gecko-inspired adhesives

Mengüç, Y., Röhrig, M., Abusomwan, U., Hölscher, H., Sitti, M.

Journal of The Royal Society Interface, 11(94):20131205, The Royal Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dynamic Trapping and Two-Dimensional Transport of Swimming Microorganisms Using a Rotating Magnetic Micro-Robot

Ye, Z., Sitti, M.

Lab on a Chip, 14(13):2177-2182, Royal Society of Chemistry, 2014 (article)

pi

Project Page [BibTex]


no image
STRIDE II: a water strider-inspired miniature robot with circular footpads

Ozcan, O., Wang, H., Taylor, J. D., Sitti, M.

International Journal of Advanced Robotic Systems, 11(6):85, SAGE Publications Sage UK: London, England, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Soft Grippers Using Micro-Fibrillar Adhesives for Transfer Printing

Song, S., Sitti, M.

Advanced Materials, 26(28):4901-4906, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Can DC motors directly drive flapping wings at high frequency and large wing strokes?

Campolo, D., Azhar, M., Lau, G., Sitti, M.

IEEE/ASME Trans. on Mechatronics, 19(1):109-120, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Magnetic steering control of multi-cellular bio-hybrid microswimmers

Carlsen, R. W., Edwards, M. R., Zhuang, J., Pacoret, C., Sitti, M.

Lab on a Chip, 14(19):3850-3859, Royal Society of Chemistry, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Analytical modeling and experimental characterization of chemotaxis in serratia marcescens

Zhuang, J., Wei, G., Carlsen, R. W., Edwards, M. R., Marculescu, R., Bogdan, P., Sitti, M.

Physical Review E, 89(5):052704, American Physical Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Robotic assembly of hydrogels for tissue engineering and regenerative medicine

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

In Journal of Tissue Engineering and Regenerative Medicine, 8, pages: 181-182, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Swimming characterization of Serratia marcescens for bio-hybrid micro-robotics

Edwards, M. R., Carlsen, R. W., Zhuang, J., Sitti, M.

Journal of Micro-Bio Robotics, 9(3):47-60, Springer Berlin Heidelberg, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Influence of Magnetic Fields on Magneto-Aerotaxis

Bennet, M., McCarthy, A., Fix, D., Edwards, M. R., Repp, F., Vach, P., Dunlop, J. W., Sitti, M., Buller, G. S., Klumpp, S., others,

PLoS One, 9(7):e101150, Public Library of Science, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance

Hines, L., Campolo, D., Sitti, M.

IEEE Trans. on Robotics, 30(1):220-232, IEEE, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Untethered micro-robotic coding of three-dimensional material composition

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

Nature Communications, 5, pages: DOI-10, Nature Publishing Group, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

Aksak, B., Sahin, K., Sitti, M.

Beilstein journal of nanotechnology, 5(1):630-638, Beilstein-Institut, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Mechanically Switchable Elastomeric Microfibrillar Adhesive Surfaces for Transfer Printing

Sariola, V., Sitti, M.

Advanced Materials Interfaces, 1(4):1300159, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots

Ye, Z., Edington, C., Russell, A. J., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, pages: 26-31, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
MultiMo-Bat: A biologically inspired integrated jumping–gliding robot

Woodward, M. A., Sitti, M.

The International Journal of Robotics Research, 33(12):1511-1529, SAGE Publications Sage UK: London, England, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella

Ye, Z., Régnier, S., Sitti, M.

IEEE Trans. on Robotics, 30(1):3-13, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Structural optimization method towards synthesis of small scale flexure-based mobile grippers

Lum, G. Z., Diller, E., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2339-2344, 2014 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers

Diller, E., Sitti, M.

Advanced Functional Materials, 24, pages: 4397-4404, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Six-Degrees-of-Freedom Remote Actuation of Magnetic Microrobots.

Diller, E. D., Giltinan, J., Lum, G. Z., Ye, Z., Sitti, M.

In Robotics: Science and Systems, 2014 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Mechanics of Load–Drag–Unload Contact Cleaning of Gecko-Inspired Fibrillar Adhesives

Abusomwan, U. A., Sitti, M.

Langmuir, 30(40):11913-11918, American Chemical Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

2013


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,651 (misc)

pi

[BibTex]

2013


[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,683 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent 8,524,092 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2013, US Patent App. 13/845,702 (misc)

pi

[BibTex]

[BibTex]


Thumb xl toc image
Hybrid nanocolloids with programmed three-dimensional shape and material composition

Mark, A. G., Gibbs, J. G., Lee, T., Fischer, P.

NATURE MATERIALS, 12(9):802-807, 2013, Max Planck Press Release. (article)

Abstract
Tuning the optical(1,2), electromagnetic(3,4) and mechanical properties of a material requires simultaneous control over its composition and shape(5). This is particularly challenging for complex structures at the nanoscale because surface-energy minimization generally causes small structures to be highly symmetric(5). Here we combine low-temperature shadow deposition with nanoscale patterning to realize nanocolloids with anisotropic three-dimensional shapes, feature sizes down to 20 nm and a wide choice of materials. We demonstrate the versatility of the fabrication scheme by growing three-dimensional hybrid nanostructures that contain several functional materials with the lowest possible symmetry, and by fabricating hundreds of billions of plasmonic nanohelices, which we use as chiral metafluids with record circular dichroism and tunable chiroptical properties.

Max Planck Press Release.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


Thumb xl fig1
Chiral Colloidal Molecules And Observation of The Propeller Effect

Schamel, D., Pfeifer, M., Gibbs, J. G., Miksch, B., Mark, A. G., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(33):12353-12359, 2013 (article)

Abstract
Chiral molecules play an important role in biological and chemical processes, but physical effects due to their symmetry-breaking are generally weak. Several physical chiral separation schemes which could potentially be useful, including the propeller effect, have therefore not yet been demonstrated at the molecular scale. However, it has been proposed that complex nonspherical colloidal particles could act as ``colloidal molecules{''} in mesoscopic model systems to permit the visualization of molecular phenomena that are otherwise difficult to observe. Unfortunately, it is difficult to synthesize such colloids because surface minimization generally favors the growth of symmetric particles. Here we demonstrate the production of large numbers of complex colloids with glancing angle physical vapor deposition. We use chiral colloids to demonstrate the Baranova and Zel'dovich (Baranova, N. B.; Zel'dovich, B. Y. Chem. Phys. Lett. 1978, 57, 435) propeller effect: the separation of a racemic mixture by application of a rotating field that couples to the dipole moment of the enantiomers and screw propels them in opposite directions. The handedness of the colloidal suspensions is monitored with circular differential light scattering. An exact solution for the colloid's propulsion is derived, and comparisons between the colloidal system and the corresponding effect at the molecular scale are made.

pf

Video - Nanospropellers DOI [BibTex]

Video - Nanospropellers DOI [BibTex]


Thumb xl toc image
Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy

Pfeifer, M., Ruf, A., Fischer, P.

OPTICS EXPRESS, 21(22):25643-25654, 2013 (article)

Abstract
We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated. (C) 2013 Optical Society of America

pf

DOI [BibTex]


Thumb xl applied physics cover vol 103 number 21
Plasmonic nanohelix metamaterials with tailorable giant circular dichroism

Gibbs, J. G., Mark, A. G., Eslami, S., Fischer, P.

APPLIED PHYSICS LETTERS, 103(21), 2013, Featured cover article. (article)

Abstract
Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative e and mu. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data. (C) 2013 AIP Publishing LLC.

Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]


no image
Angular Motion Control Using a Closed-Loop CPG for a Water-Running Robot

Thatte, N., Khoramshahi, M., Ijspeert, A., Sitti, M.

In Dynamic Walking 2013, (EPFL-CONF-199763), 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions

Miyashita, S., Diller, E., Sitti, M.

The International Journal of Robotics Research, 32(5):591-613, SAGE Publications Sage UK: London, England, 2013 (article)

pi

[BibTex]

[BibTex]