Header logo is


2017


Thumb xl toc image patent
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

US Patent 9,731,422, 2017 (patent)

Abstract
The present invention are methods for fabrication of micro- and/or nano-scale adhesive fibers and their use for movement and manipulation of objects. Further disclosed is a method of manipulating a part by providing a manipulation device with a plurality of fibers, where each fiber has a tip with a flat surface that is parallel to a backing layer, contacting the flat surfaces on an object, moving the object to a new location, then disengaging the tips from the object.

pi

link (url) [BibTex]


Thumb xl muvs
Towards Accurate Marker-less Human Shape and Pose Estimation over Time

Huang, Y., Bogo, F., Lassner, C., Kanazawa, A., Gehler, P. V., Romero, J., Akhter, I., Black, M. J.

In International Conference on 3D Vision (3DV), pages: 421-430, 2017 (inproceedings)

Abstract
Existing markerless motion capture methods often assume known backgrounds, static cameras, and sequence specific motion priors, limiting their application scenarios. Here we present a fully automatic method that, given multiview videos, estimates 3D human pose and body shape. We take the recently proposed SMPLify method [12] as the base method and extend it in several ways. First we fit a 3D human body model to 2D features detected in multi-view images. Second, we use a CNN method to segment the person in each image and fit the 3D body model to the contours, further improving accuracy. Third we utilize a generic and robust DCT temporal prior to handle the left and right side swapping issue sometimes introduced by the 2D pose estimator. Validation on standard benchmarks shows our results are comparable to the state of the art and also provide a realistic 3D shape avatar. We also demonstrate accurate results on HumanEva and on challenging monocular sequences of dancing from YouTube.

ps

Code pdf DOI Project Page [BibTex]


no image
An image-computable psychophysical spatial vision model

Schütt, H. H., Wichmann, F. A.

Journal of Vision, 17(12), 2017 (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Methods and measurements to compare men against machines

Wichmann, F. A., Janssen, D. H. J., Geirhos, R., Aguilar, G., Schütt, H. H., Maertens, M., Bethge, M.

Electronic Imaging, pages: 36-45(10), 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 08 at 12.58.55 pm
Is Growing Good for Learning?

Heim, S., Spröwitz, A.

Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, 2017 (conference)

dlg

[BibTex]

[BibTex]


no image
Surface tension-driven self-alignment

Mastrangeli, M., Zhou, Q., Sariola, V., Lambert, P.

Soft Matter, 13, pages: 304-327, The Royal Society of Chemistry, 2017 (article)

Abstract
Surface tension-driven self-alignment is a passive and highly-accurate positioning mechanism that can significantly simplify and enhance the construction of advanced microsystems. After years of research{,} demonstrations and developments{,} the surface engineering and manufacturing technology enabling capillary self-alignment has achieved a degree of maturity conducive to a successful transfer to industrial practice. In view of this transition{,} a broad and accessible review of the physics{,} material science and applications of capillary self-alignment is presented. Statics and dynamics of the self-aligning action of deformed liquid bridges are explained through simple models and experiments{,} and all fundamental aspects of surface patterning and conditioning{,} of choice{,} deposition and confinement of liquids{,} and of component feeding and interconnection to substrates are illustrated through relevant applications in micro- and nanotechnology. A final outline addresses remaining challenges and additional extensions envisioned to further spread the use and fully exploit the potential of the technique.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


Thumb xl auroteaser
Decentralized Simultaneous Multi-target Exploration using a Connected Network of Multiple Robots

Nestmeyer, T., Robuffo Giordano, P., Bülthoff, H. H., Franchi, A.

In pages: 989-1011, Autonomous Robots, 2017 (incollection)

ps

[BibTex]

[BibTex]


no image
Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras

Ma, L., Stueckler, J., Kerl, C., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Embedded spherical localization for micro underwater vehicles based on attenuation of electro-magnetic carrier signals

Duecker, D., Geist, A. R., Hengeler, M., Kreuzer, E., Pick, M., Rausch, V., Solowjow, E.

Sensors, 17(5):959, Multidisciplinary Digital Publishing Institute, 2017 (article)

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]


no image
A Comparison of Autoregressive Hidden Markov Models for Multimodal Manipulations With Variable Masses

Kroemer, O., Peters, J.

IEEE Robotics and Automation Letters, 2(2):1101-1108, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Phase Estimation for Fast Action Recognition and Trajectory Generation in Human-Robot Collaboration

Maeda, G., Ewerton, M., Neumann, G., Lioutikov, R., Peters, J.

International Journal of Robotics Research, 36(13-14):1579-1594, 2017, Special Issue on the Seventeenth International Symposium on Robotics Research (article)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Accurate depth and normal maps from occlusion-aware focal stack symmetry

Strecke, M., Alperovich, A., Goldluecke, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Causal models for decision making via integrative inference

Geiger, P.

University of Stuttgart, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


no image
A Phase-coded Aperture Camera with Programmable Optics

Chen, J., Hirsch, M., Heintzmann, R., Eberhardt, B., Lensch, H. P. A.

Electronic Imaging, 2017(17):70-75, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Selective hydrogen isotope separation via breathing transition in MIL-53(Al)

Kim, J. Y., Zhang, L., Balderas-Xicohténcatl, R., Park, J., Hirscher, M., Moon, H. R., Oh, H.

{Journal of the American Chemical Society}, 139(49):17743-17746, American Chemical Society, Washington, DC, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M\textequalsMg2+, Ni2+)

Oh, H., Maurer, S., Balderas-Xicohténcatl, R., Arnold, L., Magdysyuk, O. V., Schütz, G., Müller, U., Hirscher, M.

{International Journal of Hydrogen Energy}, 42(2):1027-1035, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl coverhand wilson
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

ps

Thesis link (url) Project Page [BibTex]


Thumb xl passat small
Computer Vision for Autonomous Vehicles: Problems, Datasets and State-of-the-Art

Janai, J., Güney, F., Behl, A., Geiger, A.

Arxiv, 2017 (article)

Abstract
Recent years have witnessed amazing progress in AI related fields such as computer vision, machine learning and autonomous vehicles. As with any rapidly growing field, however, it becomes increasingly difficult to stay up-to-date or enter the field as a beginner. While several topic specific survey papers have been written, to date no general survey on problems, datasets and methods in computer vision for autonomous vehicles exists. This paper attempts to narrow this gap by providing a state-of-the-art survey on this topic. Our survey includes both the historically most relevant literature as well as the current state-of-the-art on several specific topics, including recognition, reconstruction, motion estimation, tracking, scene understanding and end-to-end learning. Towards this goal, we first provide a taxonomy to classify each approach and then analyze the performance of the state-of-the-art on several challenging benchmarking datasets including KITTI, ISPRS, MOT and Cityscapes. Besides, we discuss open problems and current research challenges. To ease accessibility and accommodate missing references, we will also provide an interactive platform which allows to navigate topics and methods, and provides additional information and project links for each paper.

avg

pdf Project Page Project Page [BibTex]


Thumb xl imagetoc
A Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.05435, 2017 (article)

Abstract
We present a robust deep learning based 6 degrees-of-freedom (DoF) localization system for endoscopic capsule robots. Our system mainly focuses on localization of endoscopic capsule robots inside the GI tract using only visual information captured by a mono camera integrated to the robot. The proposed system is a 23-layer deep convolutional neural network (CNN) that is capable to estimate the pose of the robot in real time using a standard CPU. The dataset for the evaluation of the system was recorded inside a surgical human stomach model with realistic surface texture, softness, and surface liquid properties so that the pre-trained CNN architecture can be transferred confidently into a real endoscopic scenario. An average error of 7.1% and 3.4% for translation and rotation has been obtained, respectively. The results accomplished from the experiments demonstrate that a CNN pre-trained with raw 2D endoscopic images performs accurately inside the GI tract and is robust to various challenges posed by reflection distortions, lens imperfections, vignetting, noise, motion blur, low resolution, and lack of unique landmarks to track.

pi

link (url) Project Page [BibTex]


no image
Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy

Wahl, N., Hennig, P., Wieser, H. P., Bangert, M.

Physics in Medicine & Biology, 62(14):5790-5807, 2017 (article)

Abstract
The sensitivity of intensity-modulated proton therapy (IMPT) treatment plans to uncertainties can be quantified and mitigated with robust/min-max and stochastic/probabilistic treatment analysis and optimization techniques. Those methods usually rely on sparse random, importance, or worst-case sampling. Inevitably, this imposes a trade-off between computational speed and accuracy of the uncertainty propagation. Here, we investigate analytical probabilistic modeling (APM) as an alternative for uncertainty propagation and minimization in IMPT that does not rely on scenario sampling. APM propagates probability distributions over range and setup uncertainties via a Gaussian pencil-beam approximation into moments of the probability distributions over the resulting dose in closed form. It supports arbitrary correlation models and allows for efficient incorporation of fractionation effects regarding random and systematic errors. We evaluate the trade-off between run-time and accuracy of APM uncertainty computations on three patient datasets. Results are compared against reference computations facilitating importance and random sampling. Two approximation techniques to accelerate uncertainty propagation and minimization based on probabilistic treatment plan optimization are presented. Runtimes are measured on CPU and GPU platforms, dosimetric accuracy is quantified in comparison to a sampling-based benchmark (5000 random samples). APM accurately propagates range and setup uncertainties into dose uncertainties at competitive run-times (GPU ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn001.gif] {$\leqslant {5}$} min). The resulting standard deviation (expectation value) of dose show average global ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn002.gif] {$\gamma_{{3}\% / {3}~{\rm mm}}$} pass rates between 94.2% and 99.9% (98.4% and 100.0%). All investigated importance sampling strategies provided less accuracy at higher run-times considering only a single fraction. Considering fractionation, APM uncertainty propagation and treatment plan optimization was proven to be possible at constant time complexity, while run-times of sampling-based computations are linear in the number of fractions. Using sum sampling within APM, uncertainty propagation can only be accelerated at the cost of reduced accuracy in variance calculations. For probabilistic plan optimization, we were able to approximate the necessary pre-computations within seconds, yielding treatment plans of similar quality as gained from exact uncertainty propagation. APM is suited to enhance the trade-off between speed and accuracy in uncertainty propagation and probabilistic treatment plan optimization, especially in the context of fractionation. This brings fully-fledged APM computations within reach of clinical application.

pn

link (url) [BibTex]

link (url) [BibTex]


Thumb xl publications toc
Deep EndoVO: A Recurrent Convolutional Neural Network (RCNN) based Visual Odometry Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

ArXiv e-prints, 2017 (article)

Abstract
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep Recurrent Convolutional Neural Networks (RCNNs) for the visual odometry task, where Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) Project Page [BibTex]


no image
Analytical probabilistic modeling of RBE-weighted dose for ion therapy

Wieser, H., Hennig, P., Wahl, N., Bangert, M.

Physics in Medicine and Biology (PMB), 62(23):8959-8982, 2017 (article)

pn

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2018 02 08 at 1.12.35 pm
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
On Maximum Entropy and Inference

Gresele, L., Marsili, M.

Entropy, 19(12):article no. 642, 2017 (article)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Feeling multiple edges: The tactile perception of short ultrasonic square reductions of the finger-surface friction

Gueorguiev, D., Vezzoli, E., Sednaoui, T., Grisoni, L., Lemaire-Semail, B.

In 2017 IEEE World Haptics Conference (WHC), pages: 125-129, 2017 (inproceedings)

hi

DOI [BibTex]

DOI [BibTex]


no image
Semi-Supervised Deep Learning for Monocular Depth Map Prediction

Kuznietsov, Y., Stueckler, J., Leibe, B.

In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Community detection, link prediction, and layer interdependence in multilayer networks

De Bacco, C., Power, E. A., Larremore, D. B., Moore, C.

Physical Review E, 95(4):042317, APS, 2017 (article)

pio

Code Preprint link (url) Project Page [BibTex]

Code Preprint link (url) Project Page [BibTex]


no image
Towards Engagement Models that Consider Individual Factors in HRI: On the Relation of Extroversion and Negative Attitude Towards Robots to Gaze and Speech During a Human-Robot Assembly Task

Ivaldi, S., Lefort, S., Peters, J., Chetouani, M., Provasi, J., Zibetti, E.

International Journal of Social Robotics, 9(1):63-86, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Non-parametric Policy Search with Limited Information Loss

van Hoof, H., Neumann, G., Peters, J.

Journal of Machine Learning Research , 18(73):1-46, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Stability of Controllers for Gaussian Process Dynamics

Vinogradska, J., Bischoff, B., Nguyen-Tuong, D., Peters, J.

Journal of Machine Learning Research, 18(100):1-37, 2017 (article)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Shadow and Specularity Priors for Intrinsic Light Field Decomposition

Alperovich, A., Johannsen, O., Strecke, M., Goldluecke, B.

In Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2017 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Two-sample tests for large random graphs using network statistics

Ghoshdastidar, D., Gutzeit, M., Carpentier, A., von Luxburg, U.

In Conference on Computational Learning Theory (COLT), Conference on Computational Learning Theory (COLT), 2017 (inproceedings)

slt

Project Page [BibTex]

Project Page [BibTex]


no image
Embedded interruptions and task complexity influence schema-related cognitive load progression in an abstract learning task

Wirzberger, M., Bijarsari, S. E., Rey, G. D.

Acta Psychologica, 179, pages: 30-41, Elsevier, 2017 (article)

Abstract
Cognitive processes related to schema acquisition comprise an essential source of demands in learning situations. Since the related amount of cognitive load is supposed to change over time, plausible temporal models of load progression based on different theoretical backgrounds are inspected in this study. A total of 116 student participants completed a basal symbol sequence learning task, which provided insights into underlying cognitive dynamics. Two levels of task complexity were determined by the amount of elements within the symbol sequence. In addition, interruptions due to an embedded secondary task occurred at five predefined stages over the task. Within the resulting 2x5-factorial mixed between-within design, the continuous monitoring of efficiency in learning performance enabled assumptions on relevant resource investment. From the obtained results, a nonlinear change of learning efficiency over time seems most plausible in terms of cognitive load progression. Moreover, different effects of the induced interruptions show up in conditions of task complexity, which indicate the activation of distinct cognitive mechanisms related to structural aspects of the task. Findings are discussed in the light of evidence from research on memory and information processing.

re

DOI [BibTex]

DOI [BibTex]


no image
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation

Sücker, K.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
SUV-quantification of physiological lung tissue in an integrated PET/MR-system: Impact of lung density and bone tissue

Seith, F., Schmidt, H., Gatidis, S., Bezrukov, I., Schraml, C., Pfannenberg, C., la Fougère, C., Nikolaou, K., Schwenzer, N.

PLOS ONE, 12(5):1-13, 2017 (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Localized Single-Cell Lysis and Manipulation Using Optothermally-Induced Bubbles

Fan, Q., Hu, W., Ohta, A. T.

Micromachines, 8(4):121, Multidisciplinary Digital Publishing Institute, 2017 (article)

pi

[BibTex]

[BibTex]


no image
Keyframe-Based Visual-Inertial Online SLAM with Relocalization

Kasyanov, A., Engelmann, F., Stueckler, J., Leibe, B.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, IROS, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Empirical Evidence for Resource-Rational Anchoring and Adjustment

Lieder, F., Griffiths, T. L., Huys, Q. J. M., Goodman, N. D.

Psychonomic Bulletin \& Review, 25, pages: 775-784, Springer, 2017 (article)

re

[BibTex]

[BibTex]


no image
A reward shaping method for promoting metacognitive learning

Lieder, F., Krueger, P. M., Callaway, F., Griffiths, T. L.

In Proceedings of the Third Multidisciplinary Conference on Reinforcement Learning and Decision-Making, 2017 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
The moderating role of arousal on the seductive detail effect

Schneider, S., Wirzberger, M., Augustin, Y., Rey, G. D.

In Abstracts of the 59th Conference of Experimental Psychologists (TeaP), pages: 96, Papst Science Publishers, Lengerich, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Influences of cognitive load on learning performance, speech and physiological parameters in a dual-task setting

Wirzberger, M., Herms, R., Esmaeili Bijarsari, S., Rey, G. D., Eibl, M.

In Abstracts of the 20th Conference of the European Society for Cognitive Psychology, pages: 161, Potsdam, Germany, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Momentum-Centered Control of Contact Interactions

Righetti, L., Herzog, A.

In Geometric and Numerical Foundations of Movements, 117, pages: 339-359, Springer Tracts in Advanced Robotics, Springer, Cham, 2017 (incollection)

mg

link (url) [BibTex]

link (url) [BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Corrosion-protected hybrid nanoparticles

Jeong, H., Alarcón-Correa, M., Mark, A. G., Son, K., Lee, T., Fischer, P.

{Advanced Science}, 4(12), Wiley-VCH, Weinheim, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

Jaiswal, S., Litzius, K., Lemesh, I., Büttner, F., Finizio, S., Raabe, J., Weigand, M., Lee, K., Langer, J., Ocker, B., Jakob, G., Beach, G. S. D., Kläui, M.

{Applied Physics Letters}, 111(2), American Institute of Physics, Melville, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ultrafast demagnetization after femtosecond laser pulses: Transfer of angular momentum from the electronic system to magnetoelastic spin-phonon modes

Fähnle, M., Tsatsoulis, T., Illg, C., Haag, M., Müller, B. Y., Zhang, L.

{Journal of Superconductivity and Novel Magnetism}, 30(5):1381-1387, Springer Science + Business Media B.V., New York, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]