Header logo is


2017


no image
Magnetic behavior of single chain magnets in metal organic frameworks CPO-27-Co

Son, K., Goering, E., Hirscher, M., Oh, H.

{Journal of Nanoscience and Nanotechnology}, 17(10):7541-7546, American Scientific Publishers, Stevenson Ranch, Calif., 2017 (article)

mms

DOI [BibTex]

2017


DOI [BibTex]


no image
Switching by domain-wall automotion in asymmetric ferromagnetic rings

Mawass, M., Richter, K., Bisig, A., Reeve, R. M., Krüger, B., Weigand, M., Stoll, H., Krone, A., Kronast, F., Schütz, G., Kläui, M.

{Physical Review Applied}, 7(4), American Physical Society, College Park, Md. [u.a.], 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction

Engelmann, F., Stueckler, J., Leibe, B.

In IEEE Winter Conference on Applications of Computer Vision, WACV, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Strategy selection as rational metareasoning

Lieder, F., Griffiths, T.

Psychological Review, 124, pages: 762-794, American Psychological Association, 2017 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
A computerized training program for teaching people how to plan better

Lieder, F., Krueger, P. M., Callaway, F., Griffiths, T. L.

PsyArXiv, 2017 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Time – Space – Content? Interrupting features of hyperlinks in multimedia learning

Wirzberger, M., Schneider, S., Dlouhy, S., Rey, G. D.

In Abstracts of the 59th Conference of Experimental Psychologists (TeaP), pages: 97, Pabst Science Publishers, Lengerich, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Computer Science meets Cognition: Möglichkeiten und Herausforderungen interdisziplinärer Kognitionsforschung [Computer science meets cognition: Chances and challenges in interdisciplinary research on cognition]

Wirzberger, M., Truschzinski, M., Schmidt, R., Barlag, M.

In INFORMATIK 2017, Lecture Notes in Informatics (LNI), pages: 2273-2277, Gesellschaft für Informatik, Bonn, 2017 (inproceedings)

re

DOI [BibTex]

DOI [BibTex]


no image
Pattern Generation for Walking on Slippery Terrains

Khadiv, M., Moosavian, S. A. A., Herzog, A., Righetti, L.

In 2017 5th International Conference on Robotics and Mechatronics (ICROM), Iran, August 2017 (inproceedings)

Abstract
In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this for- mulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.

mg

link (url) [BibTex]

link (url) [BibTex]


no image
A neutral atom moving in an external magnetic field does not feel a Lorentz force

Fähnle, M.

{American Journal of Modern Physics}, 6(6):153-155, Science Publishing Group, New York, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Temperature-dependent first-order reversal curve measurements on unusually hard magnetic low-temperature phase of MnBi

Muralidhar, S., Gräfe, J., Chen, Y., Etter, M., Gregori, G., Ener, S., Sawatzki, S., Hono, K., Gutfleisch, O., Kronmüller, H., Schütz, G., Goering, E. J.

{Physical Review B}, 95(2), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Smooth and rapid microwave synthesis of MIL-53(Fe) including superparamagnetic \textlessgamma\textgreater-Fe2O3 nanoparticles

Wengert, S., Albrecht, J., Ruoß, S., Stahl, C., Schütz, G., Schäfer, R.

{Journal of Magnetism and Magnetic Materials}, 444, pages: 168-172, NH, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Characterization and differentiation of rock varnish types from different environments by microanalytical techniques

Macholdt, D. S., Jochum, K. P., Pöhlker, C., Arangio, A., Förster, J., Stoll, B., Weis, U., Weber, B., Müller, M., Kappl, M., Shiraiwa, M., Kilcoyne, A. L. D., Weigand, M., Scholz, D., Haug, G. H., Al-Amri, A., Andreae, M. O.

{Chemical Geology}, 459, pages: 91-118, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy

Litzius, K., Lemesh, I., Krüger, B., Bassirian, P., Caretta, L., Richter, K., Büttner, F., Sato, K., Tretiakov, O. A., Förster, J., Reeve, R. M., Weigand, M., Bykova, I., Stoll, H., Schütz, G., Beach, G. S. D., Kläui, M.

{Nature Physics}, 13(2):170-175, Nature Pub. Group, London, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Is Growing Good for Learning?

Heim, Steve, Spröwitz, Alexander

In Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, Hokkaido, Japan, 2017 (inproceedings)

[BibTex]

[BibTex]


no image
When does bounded-optimal metareasoning favor few cognitive systems?

Milli, S., Lieder, F., Griffiths, T. L.

In AAAI Conference on Artificial Intelligence, 31, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
The Structure of Goal Systems Predicts Human Performance

Bourgin, D., Lieder, F., Reichman, D., Talmon, N., Griffiths, T.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Learning to (mis) allocate control: maltransfer can lead to self-control failure

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

In The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision Making. Ann Arbor, Michigan, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Inspecting cognitive load factors in digital learning settings with ACT-R

Wirzberger, M.

In Dagstuhl 2017. Proceedings of the 11th Joint Workshop of the German Research Training Groups in Computer Science, pages: 62, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Lernförderliche Gestaltung computerbasierter Instruktionen zur Roboterkonstruktion [Enhancing design of computer-based instructions in a robot construction task]

Esmaeili Bijarsari, S., Wirzberger, M., Rey, G. D.

In INFORMATIK 2017, Lecture Notes in Informatics (LNI), pages: 2279-2286, Gesellschaft für Informatik, Bonn, 2017 (inproceedings)

re

DOI [BibTex]

DOI [BibTex]


no image
Comment on magnonic black holes

Fähnle, M., Schütz, G.

{Journal of Magnetism and Magnetic Materials}, 444, pages: 146-146, NH, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Cr-Substitution in Ba2In2O5 \mbox⋅ (H2O)x (x \textequals 0.16, 0.74)

Yoon, S., Son, K., Hagemann, H., Widenmeyer, M., Weidenkaff, A.

{Solid State Sciences}, 73, pages: 1-6, Elsevier Masson SAS, Paris, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Comment on half-integer quantum numbers for the total angular momentum of photons in light beams with finite lateral extensions

Fähnle, M.

{American Journal of Modern Physics}, 6(5):88-90, Science Publishing Group, New York, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Toward a rational and mechanistic account of mental effort

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T., Cohen, J., Botvinick, M.

Annual Review of Neuroscience, 40, pages: 99-124, Annual Reviews, 2017 (article)

re

Project Page [BibTex]

Project Page [BibTex]


no image
An automatic method for discovering rational heuristics for risky choice

Lieder, F., Krueger, P. M., Griffiths, T. L.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society, 2017 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
Mouselab-MDP: A new paradigm for tracing how people plan

Callaway, F., Lieder, F., Krueger, P. M., Griffiths, T. L.

In The 3rd multidisciplinary conference on reinforcement learning and decision making, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
A dynamic process model for predicting workload in an air traffic controller task

Truschzinski, M., Wirzberger, M.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, pages: 1224-1229, Cognitive Science Society, Austin, TX, 2017 (inproceedings)

re

link (url) [BibTex]

link (url) [BibTex]


no image
Auswirkung systeminduzierter Delays auf die menschliche Gedächtnisleistung in einem virtuellen agentenbasierten Trainingssetting [Influence of system-induced delays on human memory performance in a virtual agent-based training scenario]

Wirzberger, M., Schmidt, R., Rey, G. D., Hardt, W.

In INFORMATIK 2017, Lecture Notes in Informatics (LNI), pages: 2287-2294, Gesellschaft für Informatik, Bonn, 2017 (inproceedings)

re

DOI [BibTex]

DOI [BibTex]


no image
Advanced magneto-optical Kerr effect measurements of superconductors at low temperatures

Stahl, C., Gräfe, J., Ruoß, S., Zahn, P., Bayer, J., Simmendinger, J., Schütz, G., Albrecht, J.

{AIP Advances}, 7(10), 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unifying ultrafast demagnetization and intrinsic Gilbert damping in Co/Ni bilayers with electronic relaxation near the Fermi surface

Zhang, W., He, W., Zhang, X.-Q., Cheng, Z.-H., Teng, J., Fähnle, M.

{Physical Review B}, 96(22), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy

Yamamoto, K., Klossek, A., Flesch, R., Rancan, F., Weigand, M., Bykova, I., Bechtel, M., Ahlberg, S., Vogt, A., Blume-Peytavi, U., Schrade, P., Bachmann, S., Hedtrich, S., Schäfer-Korting, M., Rühl, E.

{European Journal of Pharmaceutics and Biopharmaceutics}, 118, pages: 30-37, Elsevier, Amsterdam, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Enhancing metacognitive reinforcement learning using reward structures and feedback

Krueger, P. M., Lieder, F., Griffiths, T. L.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017 (inproceedings)

re

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]


no image
The anchoring bias reflects rational use of cognitive resources

Lieder, F., Griffiths, T. L., Huys, Q. J. M., Goodman, N. D.

Psychonomic Bulletin \& Review, 25, pages: 762-794, Springer, 2017 (article)

re

[BibTex]

[BibTex]


no image
Helping people choose subgoals with sparse pseudo rewards

Callaway, F., Lieder, F., Griffiths, T. L.

In Proceedings of the Third Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Modeling cognitive load effects in an interrupted learning task: An ACT-R approach

Wirzberger, M., Rey, G. D., Krems, J.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, pages: 3540-3545, Cognitive Science Society, Austin, TX, 2017 (inproceedings)

re

link (url) [BibTex]

link (url) [BibTex]


no image
Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites

Weinrauch, I., Savchenko, I., Denysenko, D., Souliou, S. M., Kim, H., Le Tacon, M., Daemen, L. L., Cheng, Y., Mavrandonakis, A., Ramirez-Cuesta, A. J., Volkmer, D., Schütz, G., Hirscher, M., Heine, T.

{Nature Communications}, 8, Nature Publishing Group, London, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Multiscale simulations of topological transformations in magnetic-skyrmion spin structures

De Lucia, A., Litzius, K., Krüger, B., Tretiakov, O. A., Kläui, M.

{Physical Review B}, 96(2), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unexpectedly marginal effect of electronic correlations on ultrafast demagnetization after femtosecond laser-pulse excitation

Weng, W., Huang, Haonan, Briones Paz, J. Z., Teeny, N., Müller, B. Y., Haag, M., Kuhn, T., Fähnle, M.

{Physical Review B}, 95(22), American Physical Society, Woodbury, NY, 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Black manganese-rich crusts on a Gothic cathedral

Macholdt, D. S., Herrmann, S., Jochum, K. P., Kilcoyne, A. L. D., Laubscher, T., Pfisterer, H. K., Pöhlker, C., Schwager, B., Weber, B., Weigand, M., Domke, K. F., Andreae, M. O.

{Atmospheric Environment}, 171, pages: 205-220, Elsevier, Amsterdam [u.a.], 2017 (article)

mms

DOI [BibTex]

DOI [BibTex]

1997


no image
Comparing support vector machines with Gaussian kernels to radial basis function classifiers

Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.

IEEE Transactions on Signal Processing, 45(11):2758-2765, November 1997 (article)

Abstract
The support vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights, and threshold that minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by X-means clustering, and the weights are computed using error backpropagation. We consider three machines, namely, a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the United States postal service database of handwritten digits, the SV machine achieves the highest recognition accuracy, followed by the hybrid system. The SV approach is thus not only theoretically well-founded but also superior in a practical application.

ei

Web DOI [BibTex]

1997


Web DOI [BibTex]


no image
The view-graph approach to visual navigation and spatial memory

Mallot, H., Franz, M., Schölkopf, B., Bülthoff, H.

In Artificial Neural Networks: ICANN ’97, pages: 751-756, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
This paper describes a purely visual navigation scheme based on two elementary mechanisms (piloting and guidance) and a graph structure combining individual navigation steps controlled by these mechanisms. In robot experiments in real environments, both mechanisms have been tested, piloting in an open environment and guidance in a maze with restricted movement opportunities. The results indicate that navigation and path planning can be brought about with these simple mechanisms. We argue that the graph of local views (snapshots) is a general and biologically plausible means of representing space and integrating the various mechanisms of map behaviour.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Predicting time series with support vector machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial Neural Networks: ICANN’97, pages: 999-1004, (Editors: Schölkopf, B. , C.J.C. Burges, A.J. Smola), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Predicting time series with support vectur machines

Müller, K., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.

In Artificial neural networks: ICANN ’97, pages: 999-1004, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks , October 1997 (inproceedings)

Abstract
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Kernel principal component analysis

Schölkopf, B., Smola, A., Müller, K.

In Artificial neural networks: ICANN ’97, LNCS, vol. 1327, pages: 583-588, (Editors: W Gerstner and A Germond and M Hasler and J-D Nicoud), Springer, Berlin, Germany, 7th International Conference on Artificial Neural Networks, October 1997 (inproceedings)

Abstract
A new method for performing a nonlinear form of Principal Component Analysis is proposed. By the use of integral operator kernel functions, one can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible d-pixel products in images. We give the derivation of the method and present experimental results on polynomial feature extraction for pattern recognition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl sharpening
Robust anisotropic diffusion and sharpening of scalar and vector images

Black, M. J., Sapiro, G., Marimont, D., Heeger, D.

In Int. Conf. on Image Processing, ICIP, 1, pages: 263-266, Vol. 1, Santa Barbara, CA, October 1997 (inproceedings)

Abstract
Relations between anisotropic diffusion and robust statistics are described. We show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edge-stopping" function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new "edge-stopping" function based on Tukey's biweight robust estimator, that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in the image. We extend the framework to vector-valued images and show applications to robust image sharpening.

ps

pdf publisher site [BibTex]

pdf publisher site [BibTex]


no image
Homing by parameterized scene matching

Franz, M., Schölkopf, B., Bülthoff, H.

In Proceedings of the 4th European Conference on Artificial Life, (Eds.) P. Husbands, I. Harvey. MIT Press, Cambridge 1997, pages: 236-245, (Editors: P Husbands and I Harvey), MIT Press, Cambridge, MA, USA, 4th European Conference on Artificial Life (ECAL97), July 1997 (inproceedings)

Abstract
In visual homing tasks, animals as well as robots can compute their movements from the current view and a snapshot taken at a home position. Solving this problem exactly would require knowledge about the distances to visible landmarks, information, which is not directly available to passive vision systems. We propose a homing scheme that dispenses with accurate distance information by using parameterized disparity fields. These are obtained from an approximation that incorporates prior knowledge about perspective distortions of the visual environment. A mathematical analysis proves that the approximation does not prevent the scheme from approaching the goal with arbitrary accuracy. Mobile robot experiments are used to demonstrate the practical feasibility of the approach.

ei

PDF [BibTex]

PDF [BibTex]