Header logo is


2006


no image
Rocking Stamper and Jumping Snake from a Dynamical System Approach to Artificial Life

Der, R., Hesse, F., Martius, G.

Adaptive Behavior, 14(2):105-115, 2006 (article)

Abstract
Dynamical systems offer intriguing possibilities as a substrate for the generation of behavior because of their rich behavioral complexity. However this complexity together with the largely covert relation between the parameters and the behavior of the agent is also the main hindrance in the goal-oriented design of a behavior system. This paper presents a general approach to the self-regulation of dynamical systems so that the design problem is circumvented. We consider the controller (a neural net work) as the mediator for changes in the sensor values over time and define a dynamics for the parameters of the controller by maximizing the dynamical complexity of the sensorimotor loop under the condition that the consequences of the actions taken are still predictable. This very general principle is given a concrete mathematical formulation and is implemented in an extremely robust and versatile algorithm for the parameter dynamics of the controller. We consider two different applications, a mechanical device called the rocking stamper and the ODE simulations of a "snake" with five degrees of freedom. In these and many other examples studied we observed various behavior modes of high dynamical complexity.

al

DOI [BibTex]

2006


DOI [BibTex]


no image
Programmable central pattern generators: an application to biped locomotion control

Righetti, L., Ijspeert, A.

In Proceedings of the IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pages: 1585-1590, IEEE, 2006 (inproceedings)

mg

[BibTex]

[BibTex]


no image
Magnetic vortex core reversal by excitation with short bursts of an alternating field

Van Waeyenberge, B., Puzic, A., Stoll, H., Chou, K. W., Tyliszczak, T., Hertel, R., Fähnle, M., Bruckl, H., Rott, K., Reiss, G., Neudecker, I., Weiss, D., Back, C. H., Schütz, G.

{Nature}, 444(7118):461-464, 2006 (article)

mms

[BibTex]

[BibTex]


no image
Structure and magnetism in bcc-based iron-cobalt alloys

Diaz-Ortiz, A., Drautz, R., Fähnle, M., Dosch, H., Sanchez, J. M.

{Physical Review B}, 73, 2006 (article)

mms

[BibTex]

[BibTex]


no image
Role of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets in the s-d model

Fähnle, M., Singer, R., Steiauf, D., Antropov, V. P.

{Physical Review B}, 73, 2006 (article)

mms

[BibTex]

[BibTex]


no image
Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared

Panella, B., Hirscher, M., Pütter, H., Müller, U.

{Advanced Functional Materials}, 16, pages: 520-524, 2006 (article)

mms

[BibTex]

[BibTex]


no image
Hardness of nanostructured Al-Zn, Al-Mg and Al-Zn-Mg alloys obtained by high-pressure torsion

Mazilkin, A.A., Baretzky, B., Enders, S., Kogtenkova, O.A., Straumal, B.B., Rabkin, E., Valiev, R.Z.

{Defect and Diffusion Forum}, 249, pages: 155-160, 2006 (article)

mms

[BibTex]

[BibTex]


no image
Magnetischer zirkularer Röntgendichroismus an Übergangsmetalloxiden

Lafkioti, M.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
High-pressure influence on the kinetics of grain boundary segregation in the Cu-Bi system

Chang, L.-S., Straumal, B., Rabkin, E., Lojkowski, W., Gust, W.

In 258-260, pages: 390-396, Aveiro (Portugal), 2006 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Contributions to the theory of x-ray magnetic dichroism

Dörfler, F.

Universität Stuttgart, Stuttgart, 2006 (mastersthesis)

mms

[BibTex]

[BibTex]

1994


no image
Robot juggling: An implementation of memory-based learning

Schaal, S., Atkeson, C. G.

Control Systems Magazine, 14(1):57-71, 1994, clmc (article)

Abstract
This paper explores issues involved in implementing robot learning for a challenging dynamic task, using a case study from robot juggling. We use a memory-based local modeling approach (locally weighted regression) to represent a learned model of the task to be performed. Statistical tests are given to examine the uncertainty of a model, to optimize its prediction quality, and to deal with noisy and corrupted data. We develop an exploration algorithm that explicitly deals with prediction accuracy requirements during exploration. Using all these ingredients in combination with methods from optimal control, our robot achieves fast real-time learning of the task within 40 to 100 trials.

am

link (url) [BibTex]

1994


link (url) [BibTex]


no image
Robot learning by nonparametric regression

Schaal, S., Atkeson, C. G.

In Proceedings of the International Conference on Intelligent Robots and Systems (IROS’94), pages: 478-485, Munich Germany, 1994, clmc (inproceedings)

Abstract
We present an approach to robot learning grounded on a nonparametric regression technique, locally weighted regression. The model of the task to be performed is represented by infinitely many local linear models, i.e., the (hyper-) tangent planes at every query point. Such a model, however, is only generated when a query is performed and is not retained. This is in contrast to other methods using a finite set of linear models to accomplish a piecewise linear model. Architectural parameters of our approach, such as distance metrics, are also a function of the current query point instead of being global. Statistical tests are presented for when a local model is good enough such that it can be reliably used to build a local controller. These statistical measures also direct the exploration of the robot. We explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a center of exploration and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach by describing how it has been used to enable a robot to learn a challenging juggling task: Within 40 to 100 trials the robot accomplished the task goal starting out with no initial experiences.

am

[BibTex]

[BibTex]


no image
Assessing the quality of learned local models

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 6, pages: 160-167, (Editors: Cowan, J.;Tesauro, G.;Alspector, J.), Morgan Kaufmann, San Mateo, CA, 1994, clmc (inproceedings)

Abstract
An approach is presented to learning high dimensional functions in the case where the learning algorithm can affect the generation of new data. A local modeling algorithm, locally weighted regression, is used to represent the learned function. Architectural parameters of the approach, such as distance metrics, are also localized and become a function of the query point instead of being global. Statistical tests are given for when a local model is good enough and sampling should be moved to a new area. Our methods explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a "center of exploration" and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach with simulation results and results from a real robot learning a complex juggling task.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Memory-based robot learning

Schaal, S., Atkeson, C. G.

In IEEE International Conference on Robotics and Automation, 3, pages: 2928-2933, San Diego, CA, 1994, clmc (inproceedings)

Abstract
We present a memory-based local modeling approach to robot learning using a nonparametric regression technique, locally weighted regression. The model of the task to be performed is represented by infinitely many local linear models, the (hyper-) tangent planes at every query point. This is in contrast to other methods using a finite set of linear models to accomplish a piece-wise linear model. Architectural parameters of our approach, such as distance metrics, are a function of the current query point instead of being global. Statistical tests are presented for when a local model is good enough such that it can be reliably used to build a local controller. These statistical measures also direct the exploration of the robot. We explicitly deal with the case where prediction accuracy requirements exist during exploration: By gradually shifting a center of exploration and controlling the speed of the shift with local prediction accuracy, a goal-directed exploration of state space takes place along the fringes of the current data support until the task goal is achieved. We illustrate this approach by describing how it has been used to enable a robot to learn a challenging juggling task: within 40 to 100 trials the robot accomplished the task goal starting out with no initial experiences.

am

[BibTex]

[BibTex]


no image
Nonparametric regression for learning

Schaal, S.

In Conference on Adaptive Behavior and Learning, Center of Interdisciplinary Research (ZIF) Bielefeld Germany, also technical report TR-H-098 of the ATR Human Information Processing Research Laboratories, 1994, clmc (inproceedings)

Abstract
In recent years, learning theory has been increasingly influenced by the fact that many learning algorithms have at least in part a comprehensive interpretation in terms of well established statistical theories. Furthermore, with little modification, several statistical methods can be directly cast into learning algorithms. One family of such methods stems from nonparametric regression. This paper compares nonparametric learning with the more widely used parametric counterparts and investigates how these two families differ in their properties and their applicability. 

am

link (url) [BibTex]

link (url) [BibTex]