Header logo is


2016


no image
Structured contact force optimization for kino-dynamic motion generation

Herzog, A., Schaal, S., Righetti, L.

In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 2703-2710, IEEE, Daejeon, South Korea, 2016 (inproceedings)

Abstract
Optimal control approaches in combination with trajectory optimization have recently proven to be a promising control strategy for legged robots. Computationally efficient and robust algorithms were derived using simplified models of the contact interaction between robot and environment such as the linear inverted pendulum model (LIPM). However, as humanoid robots enter more complex environments, less restrictive models become increasingly important. As we leave the regime of linear models, we need to build dedicated solvers that can compute interaction forces together with consistent kinematic plans for the whole-body. In this paper, we address the problem of planning robot motion and interaction forces for legged robots given predefined contact surfaces. The motion generation process is decomposed into two alternating parts computing force and motion plans in coherence. We focus on the properties of the momentum computation leading to sparse optimal control formulations to be exploited by a dedicated solver. In our experiments, we demonstrate that our motion generation algorithm computes consistent contact forces and joint trajectories for our humanoid robot. We also demonstrate the favorable time complexity due to our formulation and composition of the momentum equations.

am mg

link (url) DOI [BibTex]

2016


link (url) DOI [BibTex]


no image
Balancing and Walking Using Full Dynamics LQR Control With Contact Constraints

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 63-68, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Torque control algorithms which consider robot dynamics and contact constraints are important for creating dynamic behaviors for humanoids. As computational power increases, algorithms tend to also increase in complexity. However, it is not clear how much complexity is really required to create controllers which exhibit good performance. In this paper, we study the capabilities of a simple approach based on contact consistent LQR controllers designed around key poses to control various tasks on a humanoid robot. We present extensive experimental results on a hydraulic, torque controlled humanoid performing balancing and stepping tasks. This feedback control approach captures the necessary synergies between the DoFs of the robot to guarantee good control performance. We show that for the considered tasks, it is only necessary to re-linearize the dynamics of the robot at different contact configurations and that increasing the number of LQR controllers along desired trajectories does not improve performance. Our result suggest that very simple controllers can yield good performance competitive with current state of the art, but more complex, optimization-based whole-body controllers. A video of the experiments can be found at https://youtu.be/5T08CNKV1hw.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Step Timing Adjustement: a Step toward Generating Robust Gaits

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pages: 35-42, IEEE, Cancun, Mexico, 2016 (inproceedings)

Abstract
Step adjustment for humanoid robots has been shown to improve robustness in gaits. However, step duration adaptation is often neglected in control strategies. In this paper, we propose an approach that combines both step location and timing adjustment for generating robust gaits. In this approach, step location and step timing are decided, based on feedback from the current state of the robot. The proposed approach is comprised of two stages. In the first stage, the nominal step location and step duration for the next step or a previewed number of steps are specified. In this stage which is done at the start of each step, the main goal is to specify the best step length and step duration for a desired walking speed. The second stage deals with finding the best landing point and landing time of the swing foot at each control cycle. In this stage, stability of the gaits is preserved by specifying a desired offset between the swing foot landing point and the Divergent Component of Motion (DCM) at the end of current step. After specifying the landing point of the swing foot at a desired time, the swing foot trajectory is regenerated at each control cycle to realize desired landing properties. Simulation on different scenarios shows the robustness of the generated gaits from our proposed approach compared to the case where no timing adjustment is employed.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2009


no image
A computational model of human table tennis for robot application

Mülling, K., Peters, J.

In AMS 2009, pages: 57-64, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a BarrettWAM.

ei

Web DOI [BibTex]

2009


Web DOI [BibTex]


no image
A PAC-Bayesian Approach to Formulation of Clustering Objectives

Seldin, Y., Tishby, N.

In Proceedings of the NIPS 2009 Workshop "Clustering: Science or Art? Towards Principled Approaches", pages: 1-4, NIPS Workshop "Clustering: Science or Art? Towards Principled Approaches", December 2009 (inproceedings)

Abstract
Clustering is a widely used tool for exploratory data analysis. However, the theoretical understanding of clustering is very limited. We still do not have a well-founded answer to the seemingly simple question of “how many clusters are present in the data?”, and furthermore a formal comparison of clusterings based on different optimization objectives is far beyond our abilities. The lack of good theoretical support gives rise to multiple heuristics that confuse the practitioners and stall development of the field. We suggest that the ill-posed nature of clustering problems is caused by the fact that clustering is often taken out of its subsequent application context. We argue that one does not cluster the data just for the sake of clustering it, but rather to facilitate the solution of some higher level task. By evaluation of the clustering’s contribution to the solution of the higher level task it is possible to compare different clusterings, even those obtained by different optimization objectives. In the preceding work it was shown that such an approach can be applied to evaluation and design of co-clustering solutions. Here we suggest that this approach can be extended to other settings, where clustering is applied.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Notes on Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning: Submodularity, Sparsity & Polyhedra (DISCML), December 2009 (inproceedings)

Abstract
Generalizing the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of (|V |1/3) on the approximation factor for the (s, t) cut version of the problem. On the positive side, we propose and compare three approximation algorithms with an overall approximation factor of O(min{|V |,p|E| log |V |}) that appear to do well in practice.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning new basic Movements for Robotics

Kober, J., Peters, J.

In AMS 2009, pages: 105-112, (Editors: Dillmann, R. , J. Beyerer, C. Stiller, M. Zöllner, T. Gindele), Springer, Berlin, Germany, Autonome Mobile Systeme, December 2009 (inproceedings)

Abstract
Obtaining novel skills is one of the most important problems in robotics. Machine learning techniques may be a promising approach for automatic and autonomous acquisition of movement policies. However, this requires both an appropriate policy representation and suitable learning algorithms. Employing the most recent form of the dynamical systems motor primitives originally introduced by Ijspeert et al. [1], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning, and present our current best performing learning algorithms. Finally, we show that it is possible to include a start-up phase in rhythmic primitives. We apply our approach to two elementary movements, i.e., Ball-in-a-Cup and Ball-Paddling, which can be learned on a real Barrett WAM robot arm at a pace similar to human learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In Proceedings of 7ème Journées Nationales de la Recherche en Robotique, pages: 189-195, JNRR, November 2009 (inproceedings)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside well-structured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. We focus here on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This contribution provides a general introduction to these issues and briefly presents the contributions of the related book chapters to the corresponding research topics.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Detecting Objects in Large Image Collections and Videos by Efficient Subimage Retrieval

Lampert, CH.

In ICCV 2009, pages: 987-994, IEEE Computer Society, Piscataway, NJ, USA, Twelfth IEEE International Conference on Computer Vision, October 2009 (inproceedings)

Abstract
We study the task of detecting the occurrence of objects in large image collections or in videos, a problem that combines aspects of content based image retrieval and object localization. While most previous approaches are either limited to special kinds of queries, or do not scale to large image sets, we propose a new method, efficient subimage retrieval (ESR), which is at the same time very flexible and very efficient. Relying on a two-layered branch-and-bound setup, ESR performs object-based image retrieval in sets of 100,000 or more images within seconds. An extensive evaluation on several datasets shows that ESR is not only very fast, but it also achieves detection accuracies that are on par with or superior to previously published methods for object-based image retrieval.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A new non-monotonic algorithm for PET image reconstruction

Sra, S., Kim, D., Dhillon, I., Schölkopf, B.

In IEEE - Nuclear Science Symposium Conference Record (NSS/MIC), 2009, pages: 2500-2502, (Editors: B Yu), IEEE, Piscataway, NJ, USA, IEEE Nuclear Science Symposium and Medical Imaging Conference, October 2009 (inproceedings)

Abstract
Maximizing some form of Poisson likelihood (either with or without penalization) is central to image reconstruction algorithms in emission tomography. In this paper we introduce NMML, a non-monotonic algorithm for maximum likelihood PET image reconstruction. NMML offers a simple and flexible procedure that also easily incorporates standard convex regular-ization for doing penalized likelihood estimation. A vast number image reconstruction algorithms have been developed for PET, and new ones continue to be designed. Among these, methods based on the expectation maximization (EM) and ordered-subsets (OS) framework seem to have enjoyed the greatest popularity. Our method NMML differs fundamentally from methods based on EM: i) it does not depend on the concept of optimization transfer (or surrogate functions); and ii) it is a rapidly converging nonmonotonic descent procedure. The greatest strengths of NMML, however, are its simplicity, efficiency, and scalability, which make it especially attractive for tomograph ic reconstruction. We provide a theoretical analysis NMML, and empirically observe it to outperform standard EM based methods, sometimes by orders of magnitude. NMML seamlessly allows integreation of penalties (regularizers) in the likelihood. This ability can prove to be crucial, especially because with the rapidly rising importance of combined PET/MR scanners, one will want to include more “prior” knowledge into the reconstruction.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Approximation Algorithms for Tensor Clustering

Jegelka, S., Sra, S., Banerjee, A.

In Algorithmic Learning Theory: 20th International Conference, pages: 368-383, (Editors: Gavalda, R. , G. Lugosi, T. Zeugmann, S. Zilles), Springer, Berlin, Germany, ALT, October 2009 (inproceedings)

Abstract
We present the first (to our knowledge) approximation algo- rithm for tensor clustering—a powerful generalization to basic 1D clustering. Tensors are increasingly common in modern applications dealing with complex heterogeneous data and clustering them is a fundamental tool for data analysis and pattern discovery. Akin to their 1D cousins, common tensor clustering formulations are NP-hard to optimize. But, unlike the 1D case no approximation algorithms seem to be known. We address this imbalance and build on recent co-clustering work to derive a tensor clustering algorithm with approximation guarantees, allowing metrics and divergences (e.g., Bregman) as objective functions. Therewith, we answer two open questions by Anagnostopoulos et al. (2008). Our analysis yields a constant approximation factor independent of data size; a worst-case example shows this factor to be tight for Euclidean co-clustering. However, empirically the approximation factor is observed to be conservative, so our method can also be used in practice.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Active learning using mean shift optimization for robot grasping

Kroemer, O., Detry, R., Piater, J., Peters, J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pages: 2610-2615, IEEE Service Center, Piscataway, NJ, USA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2009 (inproceedings)

Abstract
When children learn to grasp a new object, they often know several possible grasping points from observing a parent‘s demonstration and subsequently learn better grasps by trial and error. From a machine learning point of view, this process is an active learning approach. In this paper, we present a new robot learning framework for reproducing this ability in robot grasping. For doing so, we chose a straightforward approach: first, the robot observes a few good grasps by demonstration and learns a value function for these grasps using Gaussian process regression. Subsequently, it chooses grasps which are optimal with respect to this value function using a mean-shift optimization approach, and tries them out on the real system. Upon every completed trial, the value function is updated, and in the following trials it is more likely to choose even better grasping points. This method exhibits fast learning due to the data-efficiency of Gaussian process regression framework and the fact th at t he mean-shift method provides maxima of this cost function. Experiments were repeatedly carried out successfully on a real robot system. After less than sixty trials, our system has adapted its grasping policy to consistently exhibit successful grasps.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Sparse online model learning for robot control with support vector regression

Nguyen-Tuong, D., Schölkopf, B., Peters, J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pages: 3121-3126, IEEE Service Center, Piscataway, NJ, USA, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2009 (inproceedings)

Abstract
The increasing complexity of modern robots makes it prohibitively hard to accurately model such systems as required by many applications. In such cases, machine learning methods offer a promising alternative for approximating such models using measured data. To date, high computational demands have largely restricted machine learning techniques to mostly offline applications. However, making the robots adaptive to changes in the dynamics and to cope with unexplored areas of the state space requires online learning. In this paper, we propose an approximation of the support vector regression (SVR) by sparsification based on the linear independency of training data. As a result, we obtain a method which is applicable in real-time online learning. It exhibits competitive learning accuracy when compared with standard regression techniques, such as nu-SVR, Gaussian process regression (GPR) and locally weighted projection regression (LWPR).

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Implicit Wiener Series Analysis of Epileptic Seizure Recordings

Barbero, A., Franz, M., Drongelen, W., Dorronsoro, J., Schölkopf, B., Grosse-Wentrup, M.

In EMBC 2009, pages: 5304-5307, (Editors: Y Kim and B He and G Worrell and X Pan), IEEE Service Center, Piscataway, NJ, USA, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, September 2009 (inproceedings)

Abstract
Implicit Wiener series are a powerful tool to build Volterra representations of time series with any degree of nonlinearity. A natural question is then whether higher order representations yield more useful models. In this work we shall study this question for ECoG data channel relationships in epileptic seizure recordings, considering whether quadratic representations yield more accurate classifiers than linear ones. To do so we first show how to derive statistical information on the Volterra coefficient distribution and how to construct seizure classification patterns over that information. As our results illustrate, a quadratic model seems to provide no advantages over a linear one. Nevertheless, we shall also show that the interpretability of the implicit Wiener series provides insights into the inter-channel relationships of the recordings.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Incorporating Prior Knowledge on Class Probabilities into Local Similarity Measures for Intermodality Image Registration

Hofmann, M., Schölkopf, B., Bezrukov, I., Cahill, N.

In Proceedings of the MICCAI 2009 Workshop on Probabilistic Models for Medical Image Analysis , pages: 220-231, (Editors: W Wells and S Joshi and K Pohl), PMMIA, September 2009 (inproceedings)

Abstract
We present a methodology for incorporating prior knowledge on class probabilities into the registration process. By using knowledge from the imaging modality, pre-segmentations, and/or probabilistic atlases, we construct vectors of class probabilities for each image voxel. By defining new image similarity measures for distribution-valued images, we show how the class probability images can be nonrigidly registered in a variational framework. An experiment on nonrigid registration of MR and CT full-body scans illustrates that the proposed technique outperforms standard mutual information (MI) and normalized mutual information (NMI) based registration techniques when measured in terms of target registration error (TRE) of manually labeled fiducials.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Markerless 3D Face Tracking (DAGM 2009)

Walder, C., Breidt, M., Bülthoff, H., Schölkopf, B., Curio, C.

In Pattern Recognition, Lecture Notes in Computer Science, Vol. 5748 , pages: 41-50, (Editors: J Denzler and G Notni and H Süsse), Springer, Berlin, Germany, 31st Symposium of the German Association for Pattern Recognition (DAGM), September 2009 (inproceedings)

Abstract
We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects are presented.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Object Localization with Global and Local Context Kernels

Blaschko, M., Lampert, C.

In British Machine Vision Conference 2009, pages: 1-11, BMVC, September 2009 (inproceedings)

Abstract
Recent research has shown that the use of contextual cues significantly improves performance in sliding window type localization systems. In this work, we propose a method that incorporates both global and local context information through appropriately defined kernel functions. In particular, we make use of a weighted combination of kernels defined over local spatial regions, as well as a global context kernel. The relative importance of the context contributions is learned automatically, and the resulting discriminant function is of a form such that localization at test time can be solved efficiently using a branch and bound optimization scheme. By specifying context directly with a kernel learning approach, we achieve high localization accuracy with a simple and efficient representation. This is in contrast to other systems that incorporate context for which expensive inference needs to be done at test time. We show experimentally on the PASCAL VOC datasets that the inclusion of context can significantly improve localization performance, provided the relative contributions of context cues are learned appropriately.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Efficient Sample Reuse in EM-Based Policy Search

Hachiya, H., Peters, J., Sugiyama, M.

In 16th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pages: 469-484, (Editors: Buntine, W. , M. Grobelnik, D. Mladenic, J. Shawe-Taylor), Springer, Berlin, Germany, ECML PKDD, September 2009 (inproceedings)

Abstract
Direct policy search is a promising reinforcement learning framework in particular for controlling in continuous, high-dimensional systems such as anthropomorphic robots. Policy search often requires a large number of samples for obtaining a stable policy update estimator due to its high flexibility. However, this is prohibitive when the sampling cost is expensive. In this paper, we extend a EM-based policy search method so that previously collected samples can be efficiently reused. The usefulness of the proposed method, called Reward-weighted Regression with sample Reuse, is demonstrated through a robot learning experiment.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Active Structured Learning for High-Speed Object Detection

Lampert, C., Peters, J.

In DAGM 2009, pages: 221-231, (Editors: Denzler, J. , G. Notni, H. Süsse), Springer, Berlin, Germany, 31st Annual Symposium of the German Association for Pattern Recognition, September 2009 (inproceedings)

Abstract
High-speed smooth and accurate visual tracking of objects in arbitrary, unstructured environments is essential for robotics and human motion analysis. However, building a system that can adapt to arbitrary objects and a wide range of lighting conditions is a challenging problem, especially if hard real-time constraints apply like in robotics scenarios. In this work, we introduce a method for learning a discriminative object tracking system based on the recent structured regression framework for object localization. Using a kernel function that allows fast evaluation on the GPU, the resulting system can process video streams at speed of 100 frames per second or more. Consecutive frames in high speed video sequences are typically very redundant, and for training an object detection system, it is sufficient to have training labels from only a subset of all images. We propose an active learning method that select training examples in a data-driven way, thereby minimizing the required number of training labeling. Experiments on realistic data show that the active learning is superior to previously used methods for dataset subsampling for this task.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Generalized Clustering via Kernel Embeddings

Jegelka, S., Gretton, A., Schölkopf, B., Sriperumbudur, B., von Luxburg, U.

In KI 2009: AI and Automation, Lecture Notes in Computer Science, Vol. 5803, pages: 144-152, (Editors: B Mertsching and M Hund and Z Aziz), Springer, Berlin, Germany, 32nd Annual Conference on Artificial Intelligence (KI), September 2009 (inproceedings)

Abstract
We generalize traditional goals of clustering towards distinguishing components in a non-parametric mixture model. The clusters are not necessarily based on point locations, but on higher order criteria. This framework can be implemented by embedding probability distributions in a Hilbert space. The corresponding clustering objective is very general and relates to a range of common clustering concepts.

ei

PDF PDF Web DOI [BibTex]

PDF PDF Web DOI [BibTex]


no image
Discovering Temporal Patterns of Differential Gene Expression in Microarray Time Series

Stegle, O., Denby, KJ., Wild, DL., McHattie, S., Mead, A., Ghahramani, Z., Borgwardt, KM.

In Proceedings of the German Conference on Bioinformatics 2009 (GCB 2009), pages: 133-142, (Editors: Grosse, I. , S. Neumann, S. Posch, F. Schreiber, P. F. Stadler), Gesellschaft für Informatik, Bonn, Germany, German Conference on Bioinformatics (GCB '09), September 2009 (inproceedings)

Abstract
A wealth of time series of microarray measurements have become available over recent years. Several two-sample tests for detecting differential gene expression in these time series have been defined, but they can only answer the question whether a gene is differentially expressed across the whole time series, not in which intervals it is differentially expressed. In this article, we propose a Gaussian process based approach for studying these dynamics of differential gene expression. In experiments on Arabidopsis thaliana gene expression levels, our novel technique helps us to uncover that the family of WRKY transcription factors appears to be involved in the early response to infection by a fungal pathogen.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Varieties of Justification in Machine Learning

Corfield, D.

In Proceedings of Multiplicity and Unification in Statistics and Probability, pages: 1-10, Multiplicity and Unification in Statistics and Probability, June 2009 (inproceedings)

Abstract
The field of machine learning has flourished over the past couple of decades. With huge amounts of data available, efficient algorithms can learn to extrapolate from their training sets to become very accurate classifiers. For example, it is straightforward now to develop classifiers which achieve accuracies of around 99% on databases of handwritten digits. Now these algorithms have been devised by theorists who arrive at the problem of machine learning with a range of different philosophical outlooks on the subject of inductive reasoning. This has led to a wide range of theoretical rationales for their work. In this talk I shall classify the different forms of justification for inductive machine learning into four kinds, and make some comparisons between them. With little by way of theoretical knowledge to aid in the learning tasks, while the relevance of these justificatory approaches for the inductive reasoning of the natural sciences is questionable, certain issues surrounding the presuppositions of inductive reasoning are brought sharply into focus. In particular, Frequentist, Bayesian and MDL outlooks can be compared.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Effects of Stimulus Type and of Error-Correcting Code Design on BCI Speller Performance

Hill, J., Farquhar, J., Martens, S., Biessmann, F., Schölkopf, B.

In Advances in neural information processing systems 21, pages: 665-672, (Editors: D Koller and D Schuurmans and Y Bengio and L Bottou), Curran, Red Hook, NY, USA, 22nd Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
From an information-theoretic perspective, a noisy transmission system such as a visual Brain-Computer Interface (BCI) speller could benefit from the use of errorcorrecting codes. However, optimizing the code solely according to the maximal minimum-Hamming-distance criterion tends to lead to an overall increase in target frequency of target stimuli, and hence a significantly reduced average target-to-target interval (TTI), leading to difficulties in classifying the individual event-related potentials (ERPs) due to overlap and refractory effects. Clearly any change to the stimulus setup must also respect the possible psychophysiological consequences. Here we report new EEG data from experiments in which we explore stimulus types and codebooks in a within-subject design, finding an interaction between the two factors. Our data demonstrate that the traditional, rowcolumn code has particular spatial properties that lead to better performance than one would expect from its TTIs and Hamming-distances alone, but nonetheless error-correcting codes can improve performance provided the right stimulus type is used.

ei

PDF PDF Web [BibTex]

PDF PDF Web [BibTex]


no image
Influence of graph construction on graph-based clustering measures

Maier, M., von Luxburg, U., Hein, M.

In Advances in neural information processing systems 21, pages: 1025-1032, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
Graph clustering methods such as spectral clustering are defined for general weighted graphs. In machine learning, however, data often is not given in form of a graph, but in terms of similarity (or distance) values between points. In this case, first a neighborhood graph is constructed using the similarities between the points and then a graph clustering algorithm is applied to this graph. In this paper we investigate the influence of the construction of the similarity graph on the clustering results. We first study the convergence of graph clustering criteria such as the normalized cut (Ncut) as the sample size tends to infinity. We find that the limit expressions are different for different types of graph, for example the r-neighborhood graph or the k-nearest neighbor graph. In plain words: Ncut on a kNN graph does something systematically different than Ncut on an r-neighborhood graph! This finding shows that graph clustering criteria cannot be studied independently of the kind of graph they are applied to. We also provide examples which show that these differences can be observed for toy and real data already for rather small sample sizes.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Local Gaussian Process Regression for Real Time Online Model Learning and Control

Nguyen-Tuong, D., Seeger, M., Peters, J.

In Advances in neural information processing systems 21, pages: 1193-1200, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian Process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The prediction for a query point is performed by weighted estimation using nearby local models. Unlike other GP approximations, such as mixtures of experts, we use a distance based measure for partitioning of the data and weighted prediction. The proposed method achieves online learning and prediction in real-time. Comparisons with other nonparametric regression methods show that LGP has higher accuracy than LWPR and close to the performance of standard GPR and nu-SVR.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Detecting the Direction of Causal Time Series

Peters, J., Janzing, D., Gretton, A., Schölkopf, B.

In Proceedings of the 26th International Conference on Machine Learning, pages: 801-808, (Editors: A Danyluk and L Bottou and ML Littman), ACM Press, New York, NY, USA, ICML, June 2009 (inproceedings)

Abstract
We propose a method that detects the true direction of time series, by fitting an autoregressive moving average model to the data. Whenever the noise is independent of the previous samples for one ordering of the observations, but dependent for the opposite ordering, we infer the former direction to be the true one. We prove that our method works in the population case as long as the noise of the process is not normally distributed (for the latter case, the direction is not identificable). A new and important implication of our result is that it confirms a fundamental conjecture in causal reasoning - if after regression the noise is independent of signal for one direction and dependent for the other, then the former represents the true causal direction - in the case of time series. We test our approach on two types of data: simulated data sets conforming to our modeling assumptions, and real world EEG time series. Our method makes a decision for a significant fraction of both data sets, and these decisions are mostly correct. For real world data, our approach outperforms alternative solutions to the problem of time direction recovery.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning Taxonomies by Dependence Maximization

Blaschko, M., Gretton, A.

In Advances in neural information processing systems 21, pages: 153-160, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
We introduce a family of unsupervised algorithms, numerical taxonomy clustering, to simultaneously cluster data, and to learn a taxonomy that encodes the relationship between the clusters. The algorithms work by maximizing the dependence between the taxonomy and the original data. The resulting taxonomy is a more informative visualization of complex data than simple clustering; in addition, taking into account the relations between different clusters is shown to substantially improve the quality of the clustering, when compared with state-ofthe-art algorithms in the literature (both spectral clustering and a previous dependence maximization approach). We demonstrate our algorithm on image and text data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning object-specific grasp affordance densities

Detry, R., Baseski, E., Popovic, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.

In 8th IEEE International Conference on Development and Learning, pages: 1-7, IEEE Service Center, Piscataway, NJ, USA, ICDL, June 2009 (inproceedings)

Abstract
This paper addresses the issue of learning and representing object grasp affordances, i.e. object-gripper relative configurations that lead to successful grasps. The purpose of grasp affordances is to organize and store the whole knowledge that an agent has about the grasping of an object, in order to facilitate reasoning on grasping solutions and their achievability. The affordance representation consists in a continuous probability density function defined on the 6D gripper pose space-3D position and orientation-, within an object-relative reference frame. Grasp affordances are initially learned from various sources, e.g. from imitation or from visual cues, leading to grasp hypothesis densities. Grasp densities are attached to a learned 3D visual object model, and pose estimation of the visual model allows a robotic agent to execute samples from a grasp hypothesis density under various object poses. Grasp outcomes are used to learn grasp empirical densities, i.e. grasps that have been confirmed through experience. We show the result of learning grasp hypothesis densities from both imitation and visual cues, and present grasp empirical densities learned from physical experience by a robot.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Understanding Brain Connectivity Patterns during Motor Imagery for Brain-Computer Interfacing

Grosse-Wentrup, M.

In Advances in neural information processing systems 21, pages: 561-568, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
EEG connectivity measures could provide a new type of feature space for inferring a subject‘s intention in Brain-Computer Interfaces (BCIs). However, very little is known on EEG connectivity patterns for BCIs. In this study, EEG connectivity during motor imagery (MI) of the left and right is investigated in a broad frequency range across the whole scalp by combining Beamforming with Transfer Entropy and taking into account possible volume conduction effects. Observed connectivity patterns indicate that modulation intentionally induced by MI is strongest in the gamma-band, i.e., above 35 Hz. Furthermore, modulation between MI and rest is found to be more pronounced than between MI of different hands. This is in contrast to results on MI obtained with bandpower features, and might provide an explanation for the so far only moderate success of connectivity features in BCIs. It is concluded that future studies on connectivity based BCIs should focus on high frequency bands and con side r ex peri mental paradigms that maximally vary cognitive demands between conditions.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Nonlinear causal discovery with additive noise models

Hoyer, P., Janzing, D., Mooij, J., Peters, J., Schölkopf, B.

In Advances in neural information processing systems 21, pages: 689-696, (Editors: D Koller and D Schuurmans and Y Bengio and L Bottou), Curran, Red Hook, NY, USA, 22nd Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
The discovery of causal relationships between a set of observed variables is a fundamental problem in science. For continuous-valued data linear acyclic causal models are often used because these models are well understood and there are well-known methods to fit them to data. In reality, of course, many causal relationships are more or less nonlinear, raising some doubts as to the applicability and usefulness of purely linear methods. In this contribution we show that in fact the basic linear framework can be generalized to nonlinear models with additive noise. In this extended framework, nonlinearities in the data-generating process are in fact a blessing rather than a curse, as they typically provide information on the underlying causal system and allow more aspects of the true data-generating mechanisms to be identified. In addition to theoretical results we show simulations and some simple real data experiments illustrating the identification power provided by nonlinearities.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Bounds on marginal probability distributions

Mooij, JM., Kappen, B.

In Advances in neural information processing systems 21, pages: 1105-1112, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
We propose a novel bound on single-variable marginal probability distributions in factor graphs with discrete variables. The bound is obtained by propagating local bounds (convex sets of probability distributions) over a subtree of the factor graph, rooted in the variable of interest. By construction, the method not only bounds the exact marginal probability distribution of a variable, but also its approximate Belief Propagation marginal ("belief"). Thus, apart from providing a practical means to calculate bounds on marginals, our contribution also lies in providing a better understanding of the error made by Belief Propagation. We show that our bound outperforms the state-of-the-art on some inference problems arising in medical diagnosis.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Convex variational Bayesian inference for large scale generalized linear models

Nickisch, H., Seeger, M.

In ICML 2009, pages: 761-768, (Editors: Danyluk, A. , L. Bottou, M. Littman), ACM Press, New York, NY, USA, 26th International Conference on Machine Learning, June 2009 (inproceedings)

Abstract
We show how variational Bayesian inference can be implemented for very large generalized linear models. Our relaxation is proven to be a convex problem for any log-concave model. We provide a generic double loop algorithm for solving this relaxation on models with arbitrary super-Gaussian potentials. By iteratively decoupling the criterion, most of the work can be done by solving large linear systems, rendering our algorithm orders of magnitude faster than previously proposed solvers for the same problem. We evaluate our method on problems of Bayesian active learning for large binary classification models, and show how to address settings with many candidates and sequential inclusion steps.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis

Schweikert, G., Widmer, C., Schölkopf, B., Rätsch, G.

In Advances in neural information processing systems 21, pages: 1433-1440, (Editors: D Koller and D Schuurmans and Y Bengio and L Bottou), Curran, Red Hook, NY, USA, 22nd Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
We study the problem of domain transfer for a supervised classification task in mRNA splicing. We consider a number of recent domain transfer methods from machine learning, including some that are novel, and evaluate them on genomic sequence data from model organisms of varying evolutionary distance. We find that in cases where the organisms are not closely related, the use of domain adaptation methods can help improve classification performance.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Diffeomorphic Dimensionality Reduction

Walder, C., Schölkopf, B.

In Advances in neural information processing systems 21, pages: 1713-1720, (Editors: D Koller and D Schuurmans and Y Bengio and L Bottou), Curran, Red Hook, NY, USA, 22nd Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
This paper introduces a new approach to constructing meaningful lower dimensional representations of sets of data points. We argue that constraining the mapping between the high and low dimensional spaces to be a diffeomorphism is a natural way of ensuring that pairwise distances are approximately preserved. Accordingly we develop an algorithm which diffeomorphically maps the data near to a lower dimensional subspace and then projects onto that subspace. The problem of solving for the mapping is transformed into one of solving for an Eulerian flow field which we compute using ideas from kernel methods. We demonstrate the efficacy of our approach on various real world data sets.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Combining appearance and motion for human action classification in videos

Dhillon, P., Nowozin, S., Lampert, C.

In 1st International Workshop on Visual Scene Understanding, pages: 22-29, IEEE Service Center, Piscataway, NJ, USA, ViSU, June 2009 (inproceedings)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Let the Kernel Figure it Out: Principled Learning of Pre-processing for Kernel Classifiers

Gehler, P., Nowozin, S.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages: 2836-2843, IEEE Service Center, Piscataway, NJ, USA, CVPR, June 2009 (inproceedings)

Abstract
Most modern computer vision systems for high-level tasks, such as image classification, object recognition and segmentation, are based on learning algorithms that are able to separate discriminative information from noise. In practice, however, the typical system consists of a long pipeline of pre-processing steps, such as extraction of different kinds of features, various kinds of normalizations, feature selection, and quantization into aggregated representations such as histograms. Along this pipeline, there are many parameters to set and choices to make, and their effect on the overall system performance is a-priori unclear. In this work, we shorten the pipeline in a principled way. We move pre-processing steps into the learning system by means of kernel parameters, letting the learning algorithm decide upon suitable parameter values. Learning to optimize the pre-processing choices becomes learning the kernel parameters. We realize this paradigm by extending the recent Multiple Kernel Learning formulation from the finite case of having a fixed number of kernels which can be combined to the general infinite case where each possible parameter setting induces an associated kernel. We evaluate the new paradigm extensively on image classification and object classification tasks. We show that it is possible to learn optimal discriminative codebooks and optimal spatial pyramid schemes, consistently outperforming all previous state-of-the-art approaches.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Identifying confounders using additive noise models

Janzing, D., Peters, J., Mooij, J., Schölkopf, B.

In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages: 249-257, (Editors: J Bilmes and AY Ng), AUAI Press, Corvallis, OR, USA, UAI, June 2009 (inproceedings)

Abstract
We propose a method for inferring the existence of a latent common cause ("confounder") of two observed random variables. The method assumes that the two effects of the confounder are (possibly nonlinear) functions of the confounder plus independent, additive noise. We discuss under which conditions the model is identifiable (up to an arbitrary reparameterization of the confounder) from the joint distribution of the effects. We state and prove a theoretical result that provides evidence for the conjecture that the model is generically identifiable under suitable technical conditions. In addition, we propose a practical method to estimate the confounder from a finite i.i.d. sample of the effects and illustrate that the method works well on both simulated and real-world data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Regression by dependence minimization and its application to causal inference in additive noise models

Mooij, J., Janzing, D., Peters, J., Schölkopf, B.

In Proceedings of the 26th International Conference on Machine Learning, pages: 745-752, (Editors: A Danyluk and L Bottou and M Littman), ACM Press, New York, NY, USA, ICML, June 2009 (inproceedings)

Abstract
Motivated by causal inference problems, we propose a novel method for regression that minimizes the statistical dependence between regressors and residuals. The key advantage of this approach to regression is that it does not assume a particular distribution of the noise, i.e., it is non-parametric with respect to the noise distribution. We argue that the proposed regression method is well suited to the task of causal inference in additive noise models. A practical disadvantage is that the resulting optimization problem is generally non-convex and can be difficult to solve. Nevertheless, we report good results on one of the tasks of the NIPS 2008 Causality Challenge, where the goal is to distinguish causes from effects in pairs of statistically dependent variables. In addition, we propose an algorithm for efficiently inferring causal models from observational data for more than two variables. The required number of regressions and independence tests is quadratic in the number of variables, which is a significant improvement over the simple method that tests all possible DAGs.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Fitted Q-iteration by Advantage Weighted Regression

Neumann, G., Peters, J.

In Advances in neural information processing systems 21, pages: 1177-1184, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
Recently, fitted Q-iteration (FQI) based methods have become more popular due to their increased sample efficiency, a more stable learning process and the higher quality of the resulting policy. However, these methods remain hard to use for continuous action spaces which frequently occur in real-world tasks, e.g., in robotics and other technical applications. The greedy action selection commonly used for the policy improvement step is particularly problematic as it is expensive for continuous actions, can cause an unstable learning process, introduces an optimization bias and results in highly non-smooth policies unsuitable for real-world systems. In this paper, we show that by using a soft-greedy action selection the policy improvement step used in FQI can be simplified to an inexpensive advantage-weighted regression. With this result, we are able to derive a new, computationally efficient FQI algorithm which can even deal with high dimensional action spaces.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Global Connectivity Potentials for Random Field Models

Nowozin, S., Lampert, C.

In CVPR 2009, pages: 818-825, IEEE Service Center, Piscataway, NJ, USA, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2009 (inproceedings)

Abstract
Markov random field (MRF, CRF) models are popular in computer vision. However, in order to be computationally tractable they are limited to incorporate only local interactions and cannot model global properties, such as connectedness, which is a potentially useful high-level prior for object segmentation. In this work, we overcome this limitation by deriving a potential function that enforces the output labeling to be connected and that can naturally be used in the framework of recent MAP-MRF LP relaxations. Using techniques from polyhedral combinatorics, we show that a provably tight approximation to the MAP solution of the resulting MRF can still be found efficiently by solving a sequence of max-flow problems. The efficiency of the inference procedure also allows us to learn the parameters of a MRF with global connectivity potentials by means of a cutting plane algorithm. We experimentally evaluate our algorithm on both synthetic data and on the challenging segmentation task of the PASCAL VOC 2008 data set. We show that in both cases the addition of a connectedness prior significantly reduces the segmentation error.

ei

PDF PDF Web DOI [BibTex]

PDF PDF Web DOI [BibTex]


no image
Bayesian Experimental Design of Magnetic Resonance Imaging Sequences

Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.

In Advances in neural information processing systems 21, pages: 1441-1448, (Editors: D Koller and D Schuurmans and Y Bengio and L Bottou), Curran, Red Hook, NY, USA, 22nd Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
We show how improved sequences for magnetic resonance imaging can be found through automated optimization of Bayesian design scores. Combining recent advances in approximate Bayesian inference and natural image statistics with high-performance numerical computation, we propose the first scalable Bayesian experimental design framework for this problem of high relevance to clinical and brain research. Our solution requires approximate inference for dense, non-Gaussian models on a scale seldom addressed before. We propose a novel scalable variational inference algorithm, and show how powerful methods of numerical mathematics can be modified to compute primitives in our framework. Our approach is evaluated on a realistic setup with raw data from a 3T MR scanner.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Characteristic Kernels on Groups and Semigroups

Fukumizu, K., Sriperumbudur, B., Gretton, A., Schölkopf, B.

In Advances in neural information processing systems 21, pages: 473-480, (Editors: D Koller and D Schuurmans and Y Bengio and L Bottou), Curran, Red Hook, NY, USA, 22nd Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
Embeddings of random variables in reproducing kernel Hilbert spaces (RKHSs) may be used to conduct statistical inference based on higher order moments. For sufficiently rich (characteristic) RKHSs, each probability distribution has a unique embedding, allowing all statistical properties of the distribution to be taken into consideration. Necessary and sufficient conditions for an RKHS to be characteristic exist for Rn. In the present work, conditions are established for an RKHS to be characteristic on groups and semigroups. Illustrative examples are provided, including characteristic kernels on periodic domains, rotation matrices, and Rn+.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Policy Search for Motor Primitives in Robotics

Kober, J., Peters, J.

In Advances in neural information processing systems 21, pages: 849-856, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
Many motor skills in humanoid robotics can be learned using parametrized motor primitives as done in imitation learning. However, most interesting motor learning problems are high-dimensional reinforcement learning problems often beyond the reach of current methods. In this paper, we extend previous work on policy learning from the immediate reward case to episodic reinforcement learning. We show that this results into a general, common framework also connected to policy gradient methods and yielding a novel algorithm for policy learning by assuming a form of exploration that is particularly well-suited for dynamic motor primitives. The resulting algorithm is an EM-inspired algorithm applicable in complex motor learning tasks. We compare this algorithm to alternative parametrized policy search methods and show that it outperforms previous methods. We apply it in the context of motor learning and show that it can learn a complex Ball-in-a-Cup task using a real Barrett WAM robot arm.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
The graphlet spectrum

Kondor, R., Shervashidze, N., Borgwardt, K.

In Proceedings of the 26th International Conference on Machine Learning (ICML 2009), pages: 529-536, (Editors: Danyluk, A. , L. Bottou, M. Littman), ACM Press, New York, NY, USA, 26th International Conference on Machine Learning (ICML), June 2009 (inproceedings)

Abstract
Current graph kernels suffer from two limitations: graph kernels based on counting particular types of subgraphs ignore the relative position of these subgraphs to each other, while graph kernels based on algebraic methods are limited to graphs without node labels. In this paper we present the graphlet spectrum, a system of graph invariants derived by means of group representation theory that capture information about the number as well as the position of labeled subgraphs in a given graph. In our experimental evaluation the graphlet spectrum outperforms state-of-the-art graph kernels.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Learning Similarity Measure for Multi-Modal 3D Image Registration

Lee, D., Hofmann, M., Steinke, F., Altun, Y., Cahill, N., Schölkopf, B.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages: 186-193, IEEE Service Center, Piscataway, NJ, USA, CVPR, June 2009 (inproceedings)

Abstract
Multi-modal image registration is a challenging problem in medical imaging. The goal is to align anatomically identical structures; however, their appearance in images acquired with different imaging devices, such as CT or MR, may be very different. Registration algorithms generally deform one image, the floating image, such that it matches with a second, the reference image, by maximizing some similarity score between the deformed and the reference image. Instead of using a universal, but a priori fixed similarity criterion such as mutual information, we propose learning a similarity measure in a discriminative manner such that the reference and correctly deformed floating images receive high similarity scores. To this end, we develop an algorithm derived from max-margin structured output learning, and employ the learned similarity measure within a standard rigid registration algorithm. Compared to other approaches, our method adapts to the specific registration problem at hand and exploits correlations between neighboring pixels in the reference and the floating image. Empirical evaluation on CT-MR/PET-MR rigid registration tasks demonstrates that our approach yields robust performance and outperforms the state of the art methods for multi-modal medical image registration.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning Complex Motions by Sequencing Simpler Motion Templates

Neumann, G., Maass, W., Peters, J.

In ICML 2009, pages: 753-760, (Editors: Danyluk, A. , L. Bottou, M. Littman), ACM Press, New York, NY, USA, 26th International Conference on Machine Learning, June 2009 (inproceedings)

Abstract
Abstraction of complex, longer motor tasks into simpler elemental movements enables humans and animals to exhibit motor skills which have not yet been matched by robots. Humans intuitively decompose complex motions into smaller, simpler segments. For example when describing simple movements like drawing a triangle with a pen, we can easily name the basic steps of this movement. Surprisingly, such abstractions have rarely been used in artificial motor skill learning algorithms. These algorithms typically choose a new action (such as a torque or a force) at a very fast time-scale. As a result, both policy and temporal credit assignment problem become unnecessarily complex - often beyond the reach of current machine learning methods. We introduce a new framework for temporal abstractions in reinforcement learning (RL), i.e. RL with motion templates. We present a new algorithm for this framework which can learn high-quality policies by making only few abstract decisions.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Solution Stability in Linear Programming Relaxations: Graph Partitioning and Unsupervised Learning

Nowozin, S., Jegelka, S.

In ICML 2009, pages: 769-776, (Editors: Danyluk, A. , L. Bottou, M. Littman), ACM Press, New York, NY, USA, 26th International Conference on Machine Learning, June 2009 (inproceedings)

Abstract
We propose a new method to quantify the solution stability of a large class of combinatorial optimization problems arising in machine learning. As practical example we apply the method to correlation clustering, clustering aggregation, modularity clustering, and relative performance significance clustering. Our method is extensively motivated by the idea of linear programming relaxations. We prove that when a relaxation is used to solve the original clustering problem, then the solution stability calculated by our method is conservative, that is, it never overestimates the solution stability of the true, unrelaxed problem. We also demonstrate how our method can be used to compute the entire path of optimal solutions as the optimization problem is increasingly perturbed. Experimentally, our method is shown to perform well on a number of benchmark problems.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Kernel Measures of Independence for Non-IID Data

Zhang, X., Song, L., Gretton, A., Smola, A.

In Advances in neural information processing systems 21, pages: 1937-1944, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
Many machine learning algorithms can be formulated in the framework of statistical independence such as the Hilbert Schmidt Independence Criterion. In this paper, we extend this criterion to deal with structured and interdependent observations. This is achieved by modeling the structures using undirected graphical models and comparing the Hilbert space embeddings of distributions. We apply this new criterion to independent component analysis and sequence clustering.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Using Bayesian Dynamical Systems for Motion Template Libraries

Chiappa, S., Kober, J., Peters, J.

In Advances in neural information processing systems 21, pages: 297-304, (Editors: Koller, D. , D. Schuurmans, Y. Bengio, L. Bottou), Curran, Red Hook, NY, USA, Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS), June 2009 (inproceedings)

Abstract
Motor primitives or motion templates have become an important concept for both modeling human motor control as well as generating robot behaviors using imitation learning. Recent impressive results range from humanoid robot movement generation to timing models of human motions. The automatic generation of skill libraries containing multiple motion templates is an important step in robot learning. Such a skill learning system needs to cluster similar movements together and represent each resulting motion template as a generative model which is subsequently used for the execution of the behavior by a robot system. In this paper, we show how human trajectories captured as multidimensional time-series can be clustered using Bayesian mixtures of linear Gaussian state-space models based on the similarity of their dynamics. The appropriate number of templates is automatically determined by enforcing a parsimonious parametrization. As the resulting model is intractable, we introduce a novel approximation method based on variational Bayes, which is especially designed to enable the use of efficient inference algorithms. On recorded human Balero movements, this method is not only capable of finding reasonable motion templates but also yields a generative model which works well in the execution of this complex task on a simulated anthropomorphic SARCOS arm.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Multi-way set enumeration in real-valued tensors

Georgii, E., Tsuda, K., Schölkopf, B.

In Proceedings of the 2nd Workshop on Data Mining using Matrices and Tensors (DMMT 2009), pages: 32-41, (Editors: C Ding and T Li), ACM Press, New York, NY, USA, 2nd Workshop on Data Mining using Matrices and Tensors (DMMT/KDD), June 2009 (inproceedings)

Abstract
The analysis of n-ary relations receives attention in many different fields, for instance biology, web mining, and social studies. In the basic setting, there are n sets of instances, and each observation associates n instances, one from each set. A common approach to explore these n-way data is the search for n-set patterns. An n-set pattern consists of specific subsets of the n instance sets such that all possible n- ary associations between the corresponding instances are observed. This provides a higher-level view of the data, revealing associative relationships between groups of instances. Here, we generalize this approach in two respects. First, we tolerate missing observations to a certain degree, that means we are also interested in n-sets where most (although not all) of the possible combinations have been recorded in the data. Second, we take association weights into account. More precisely, we propose a method to enumerate all n- sets that satisfy a minimum threshold with respect to the average association weight. Non-observed associations obtain by default a weight of zero. Technically, we solve the enumeration task using a reverse search strategy, which allows for effective pruning of the search space. In addition, our algorithm provides a ranking of the solutions and can consider further constraints. We show experimental results on artificial and real-world data sets from different domains.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]