Header logo is


2011


no image
Efficient Similarity Search for Covariance Matrices via the Jensen-Bregman LogDet Divergence

Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.

In IEEE International Conference on Computer Vision, ICCV 2011, pages: 2399-2406, (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, 13th International Conference on Computer Vision (ICCV), 2011 (inproceedings)

ei

DOI Project Page [BibTex]

2011


DOI Project Page [BibTex]


no image
Introducing the detection of auditory error responses based on BCI technology for passive interaction

Zander, TO., Klippel, DM., Scherer, R.

In Proceedings of the 5th International Brain–Computer Interface Conference, pages: 252-255, (Editors: GR Müller-Putz and R Scherer and M Billinger and A Kreilinger and V Kaiser and C Neuper), Graz: Verlag der Technischen Universität, 2011 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

Empirical Inference Symposium, 2011 (poster)

ei

[BibTex]


no image
Phase transition in the family of p-resistances

Alamgir, M., von Luxburg, U.

In Advances in Neural Information Processing Systems 24, pages: 379-387, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We study the family of p-resistances on graphs for p ≥ 1. This family generalizes the standard resistance distance. We prove that for any fixed graph, for p=1, the p-resistance coincides with the shortest path distance, for p=2 it coincides with the standard resistance distance, and for p → ∞ it converges to the inverse of the minimal s-t-cut in the graph. Secondly, we consider the special case of random geometric graphs (such as k-nearest neighbor graphs) when the number n of vertices in the graph tends to infinity. We prove that an interesting phase-transition takes place. There exist two critical thresholds p^* and p^** such that if p < p^*, then the p-resistance depends on meaningful global properties of the graph, whereas if p > p^**, it only depends on trivial local quantities and does not convey any useful information. We can explicitly compute the critical values: p^* = 1 + 1/(d-1) and p^** = 1 + 1/(d-2) where d is the dimension of the underlying space (we believe that the fact that there is a small gap between p^* and p^** is an artifact of our proofs. We also relate our findings to Laplacian regularization and suggest to use q-Laplacians as regularizers, where q satisfies 1/p^* + 1/q = 1.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cue Combination: Beyond Optimality

Rosas, P., Wichmann, F.

In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)

ei

[BibTex]

[BibTex]


no image
Generalized Dictionary Learning for Symmetric Positive Definite Matrices with Application to Nearest Neighbor Retrieval

Sra, S., Cherian, A.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, LNCS vol 6913, Part III, pages: 318-332, (Editors: D Gunopulos and T Hofmann and D Malerba and M Vazirgiannis), Springer, 22th European Conference on Machine Learning (ECML), 2011 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Nonconvex proximal splitting: batch and incremental algorithms

Sra, S.

(2), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2011 (techreport)

Abstract
Within the unmanageably large class of nonconvex optimization, we consider the rich subclass of nonsmooth problems having composite objectives (this includes the extensively studied convex, composite objective problems as a special case). For this subclass, we introduce a powerful, new framework that permits asymptotically non-vanishing perturbations. In particular, we develop perturbation-based batch and incremental (online like) nonconvex proximal splitting algorithms. To our knowledge, this is the rst time that such perturbation-based nonconvex splitting algorithms are being proposed and analyzed. While the main contribution of the paper is the theoretical framework, we complement our results by presenting some empirical results on matrix factorization.

ei

PDF [BibTex]

PDF [BibTex]


no image
Restricted boltzmann machines as useful tool for detecting oscillatory eeg components

Balderas, D., Zander, TO., Bachl, F., Neuper, C., Scherer, R.

In Proceedings of the 5th International Brain–Computer Interface Conference, pages: 68-71, (Editors: GR Müller-Putz and R Scherer and M Billinger and A Kkreilinger and V Kaiser and C Neuper), Graz: Verlag der Technischen Universität, 2011 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Hierarchical Multitask Structured Output Learning for Large-scale Sequence Segmentation

Görnitz, N., Widmer, C., Zeller, G., Kahles, A., Sonnenburg, S., Rätsch, G.

In Advances in Neural Information Processing Systems 24, pages: 2690-2698, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and FCN Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
On Fast Approximate Submodular Minimization

Jegelka, S., Lin, H., Bilmes, J.

In Advances in Neural Information Processing Systems 24, pages: 460-468, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We are motivated by an application to extract a representative subset of machine learning training data and by the poor empirical performance we observe of the popular minimum norm algorithm. In fact, for our application, minimum norm can have a running time of about O(n7) (O(n5) oracle calls). We therefore propose a fast approximate method to minimize arbitrary submodular functions. For a large sub-class of submodular functions, the algorithm is exact. Other submodular functions are iteratively approximated by tight submodular upper bounds, and then repeatedly optimized. We show theoretical properties, and empirical results suggest significant speedups over minimum norm while retaining higher accuracies.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
PAC-Bayesian Analysis of Contextual Bandits

Seldin, Y., Auer, P., Laviolette, F., Shawe-Taylor, J., Ortner, R.

In Advances in Neural Information Processing Systems 24, pages: 1683-1691, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We derive an instantaneous (per-round) data-dependent regret bound for stochastic multiarmed bandits with side information (also known as contextual bandits). The scaling of our regret bound with the number of states (contexts) $N$ goes as $\sqrt{N I_{\rho_t}(S;A)}$, where $I_{\rho_t}(S;A)$ is the mutual information between states and actions (the side information) used by the algorithm at round $t$. If the algorithm uses all the side information, the regret bound scales as $\sqrt{N \ln K}$, where $K$ is the number of actions (arms). However, if the side information $I_{\rho_t}(S;A)$ is not fully used, the regret bound is significantly tighter. In the extreme case, when $I_{\rho_t}(S;A) = 0$, the dependence on the number of states reduces from linear to logarithmic. Our analysis allows to provide the algorithm large amount of side information, let the algorithm to decide which side information is relevant for the task, and penalize the algorithm only for the side information that it is using de facto. We also present an algorithm for multiarmed bandits with side information with computational complexity that is a linear in the number of actions.

ei

PDF PDF Web Project Page [BibTex]

PDF PDF Web Project Page [BibTex]


no image
Fast projections onto L1,q-norm balls for grouped feature selection

Sra, S.

In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, LNCS vol 6913, Part III, pages: 305-317, (Editors: D Gunopulos and T Hofmann and D Malerba and M Vazirgiannis), Springer, 22th European Conference on Machine Learning (ECML), 2011 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
Model Learning in Robot Control

Nguyen-Tuong, D.

Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Kernel Belief Propagation

Song, L., Gretton, A., Bickson, D., Low, Y., Guestrin, C.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pages: 707-715, (Editors: G Gordon and D Dunson and M Dudík), JMLR, AISTATS, 2011 (inproceedings)

ei

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
On Causal Discovery with Cyclic Additive Noise Models

Mooij, J., Janzing, D., Schölkopf, B., Heskes, T.

In Advances in Neural Information Processing Systems 24, pages: 639-647, (Editors: J Shawe-Taylor and RS Zemel and PL Bartlett and FCN Pereira and KQ Weinberger), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We study a particular class of cyclic causal models, where each variable is a (possibly nonlinear) function of its parents and additive noise. We prove that the causal graph of such models is generically identifiable in the bivariate, Gaussian-noise case. We also propose a method to learn such models from observational data. In the acyclic case, the method reduces to ordinary regression, but in the more challenging cyclic case, an additional term arises in the loss function, which makes it a special case of nonlinear independent component analysis. We illustrate the proposed method on synthetic data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Additive Gaussian Processes

Duvenaud, D., Nickisch, H., Rasmussen, C.

In Advances in Neural Information Processing Systems 24, pages: 226-234, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We introduce a Gaussian process model of functions which are additive. An additive function is one which decomposes into a sum of low-dimensional functions, each depending on only a subset of the input variables. Additive GPs generalize both Generalized Additive Models, and the standard GP models which use squared-exponential kernels. Hyperparameter learning in this model can be seen as Bayesian Hierarchical Kernel Learning (HKL). We introduce an expressive but tractable parameterization of the kernel function, which allows efficient evaluation of all input interaction terms, whose number is exponential in the input dimension. The additional structure discoverable by this model results in increased interpretability, as well as state-of-the-art predictive power in regression tasks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
k-NN Regression Adapts to Local Intrinsic Dimension

Kpotufe, S.

In Advances in Neural Information Processing Systems 24, pages: 729-737, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
Many nonparametric regressors were recently shown to converge at rates that depend only on the intrinsic dimension of data. These regressors thus escape the curse of dimension when high-dimensional data has low intrinsic dimension (e.g. a manifold). We show that k-NN regression is also adaptive to intrinsic dimension. In particular our rates are local to a query x and depend only on the way masses of balls centered at x vary with radius. Furthermore, we show a simple way to choose k = k(x) locally at any x so as to nearly achieve the minimax rate at x in terms of the unknown intrinsic dimension in the vicinity of x. We also establish that the minimax rate does not depend on a particular choice of metric space or distribution, but rather that this minimax rate holds for any metric space and doubling measure.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast Newton-type Methods for Total-Variation with Applications

Barbero, A., Sra, S.

In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pages: 313-320, (Editors: L Getoor and T Scheffer), Omnipress, 28th International Conference on Machine Learning (ICML), 2011 (inproceedings)

ei

Project Page [BibTex]

Project Page [BibTex]


no image
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

Gonzalez, J., Low, Y., Gretton, A., Guestrin, C.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Vol. 15, pages: 324-332, (Editors: G Gordon and D Dunson and M Dudík), JMLR, AISTATS, 2011 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Transfer Learning with Copulas

Lopez-Paz, D., Hernandez-Lobato, J.

Neural Information Processing Systems (NIPS), 2011 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
STOMP: Stochastic trajectory optimization for motion planning

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
We present a new approach to motion planning using a stochastic trajectory optimization framework. The approach relies on generating noisy trajectories to explore the space around an initial (possibly infeasible) trajectory, which are then combined to produced an updated trajectory with lower cost. A cost function based on a combination of obstacle and smoothness cost is optimized in each iteration. No gradient information is required for the particular optimization algorithm that we use and so general costs for which derivatives may not be available (e.g. costs corresponding to constraints and motor torques) can be included in the cost function. We demonstrate the approach both in simulation and on a dual-arm mobile manipulation system for unconstrained and constrained tasks. We experimentally show that the stochastic nature of STOMP allows it to overcome local minima that gradient-based optimizers like CHOMP can get stuck in.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl toc image
Quantum-Cascade Laser-Based Vibrational Circular Dichroism

Luedeke, S., Pfeifer, M., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(15):5704-5707, 2011 (article)

Abstract
Vibrational circular dichroism (VCD) spectra were recorded with a tunable external-cavity quantum-cascade laser (QCL). In comparison with standard thermal light sources in the IR, QCLs provide orders of magnitude more power and are therefore promising for VCD studies in strongly absorbing solvents. The brightness of this novel light source is demonstrated with VCD and IR absorption measurements of a number of compounds, including proline in water.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl problem
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

ei ps

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]


no image
Preparation of high-efficiency nanostructures of crystalline silicon at low temperatures, as catalyzed by metals: The decisive role of interface thermodynamics

Wang, Zumin, Jeurgens, Lars P. H., Mittemeijer, Eric J.

2011 (mpi_year_book)

Abstract
Metals may help to convert semiconductors from a disordered (amorphous) to an ordered (crystalline) form at low temperatures. A general, quantitative model description has been developed on the basis of interface thermodynamics, which provides fundamental understanding of such so-called metal-induced crystallization (MIC) of amorphous semiconductors. This fundamental understanding can allow the low-temperature (< 200 ºC) manufacturing of high-efficiency solar cells and crystalline-Si-based nanostructures on cheap and flexible substrates such as glasses, plastics and possibly even papers.

link (url) [BibTex]


no image
Path Integral Control and Bounded Rationality

Braun, D. A., Ortega, P. A., Theodorou, E., Schaal, S.

In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL), 2011, clmc (inproceedings)

Abstract
Path integral methods [7], [15],[1] have recently been shown to be applicable to a very general class of optimal control problems. Here we examine the path integral formalism from a decision-theoretic point of view, since an optimal controller can always be regarded as an instance of a perfectly rational decision-maker that chooses its actions so as to maximize its expected utility [8]. The problem with perfect rationality is, however, that finding optimal actions is often very difficult due to prohibitive computational resource costs that are not taken into account. In contrast, a bounded rational decision-maker has only limited resources and therefore needs to strike some compromise between the desired utility and the required resource costs [14]. In particular, we suggest an information-theoretic measure of resource costs that can be derived axiomatically [11]. As a consequence we obtain a variational principle for choice probabilities that trades off maximizing a given utility criterion and avoiding resource costs that arise due to deviating from initially given default choice probabilities. The resulting bounded rational policies are in general probabilistic. We show that the solutions found by the path integral formalism are such bounded rational policies. Furthermore, we show that the same formalism generalizes to discrete control problems, leading to linearly solvable bounded rational control policies in the case of Markov systems. Importantly, Bellman?s optimality principle is not presupposed by this variational principle, but it can be derived as a limit case. This suggests that the information- theoretic formalization of bounded rationality might serve as a general principle in control design that unifies a number of recently reported approximate optimal control methods both in the continuous and discrete domain.

am

PDF [BibTex]

PDF [BibTex]


no image
Skill learning and task outcome prediction for manipulation

Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, 2011, clmc (inproceedings)

Abstract
Learning complex motor skills for real world tasks is a hard problem in robotic manipulation that often requires painstaking manual tuning and design by a human expert. In this work, we present a Reinforcement Learning based approach to acquiring new motor skills from demonstration. Our approach allows the robot to learn fine manipulation skills and significantly improve its success rate and skill level starting from a possibly coarse demonstration. Our approach aims to incorporate task domain knowledge, where appropriate, by working in a space consistent with the constraints of a specific task. In addition, we also present an approach to using sensor feedback to learn a predictive model of the task outcome. This allows our system to learn the proprioceptive sensor feedback needed to monitor subsequent executions of the task online and abort execution in the event of predicted failure. We illustrate our approach using two example tasks executed with the PR2 dual-arm robot: a straight and accurate pool stroke and a box flipping task using two chopsticks as tools.

am

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
An Iterative Path Integral Stochastic Optimal Control Approach for Learning Robotic Tasks

Theodorou, E., Stulp, F., Buchli, J., Schaal, S.

In Proceedings of the 18th World Congress of the International Federation of Automatic Control, 2011, clmc (inproceedings)

Abstract
Recent work on path integral stochastic optimal control theory Theodorou et al. (2010a); Theodorou (2011) has shown promising results in planning and control of nonlinear systems in high dimensional state spaces. The path integral control framework relies on the transformation of the nonlinear Hamilton Jacobi Bellman (HJB) partial differential equation (PDE) into a linear PDE and the approximation of its solution via the use of the Feynman Kac lemma. In this work, we are reviewing the generalized version of path integral stochastic optimal control formalism Theodorou et al. (2010a), used for optimal control and planing of stochastic dynamical systems with state dependent control and diffusion matrices. Moreover we present the iterative path integral control approach, the so called Policy Improvement with Path Integrals or (PI2 ) which is capable of scaling in high dimensional robotic control problems. Furthermore we present a convergence analysis of the proposed algorithm and we apply the proposed framework to a variety of robotic tasks. Finally with the goal to perform locomotion the iterative path integral control is applied for learning nonlinear limit cycle attractors with adjustable land scape.

am

PDF [BibTex]

PDF [BibTex]


Thumb xl toc image
Actively coupled cavity ringdown spectroscopy with low-power broadband sources

Petermann, C., Fischer, P.

OPTICS EXPRESS, 19(11):10164-10173, 2011 (article)

Abstract
We demonstrate a coupling scheme for cavity enhanced absorption spectroscopy that makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband nonlaser light sources with spectral power densities of less than 30 mu W/nm. Although the acousto-optical element reduces the ultimate detection limit by introducing additional losses, it permits absorptivities to be measured with a high dynamic range, especially in lossy environments. Absorption measurements for the forbidden transition of gaseous oxygen in air at similar to 760nm are presented using a low-coherence cw-superluminescent diode. The same setup was electronically configured to cover absorption losses from 1.8 x 10(-8)cm(-1) to 7.5\% per roundtrip. This could be of interest in process analytical applications. (C) 2011 Optical Society of America

pf

DOI [BibTex]

DOI [BibTex]


no image
The sweet coat of living cells – from supramolecular organization and dynamics to biological function

Richter, Ralf

2011 (mpi_year_book)

Abstract
Many biological cells endow themselves with a sugar-rich coat that plays a key role in the protection of the cell and in structuring and communicating with its environment. An outstanding property of these pericellular coats is their dynamic self-organization into strongly hydrated and gel-like meshworks. Tailor-made model systems that are constructed from the molecular building blocks of pericellular coats can help to understand how the coats function.

link (url) [BibTex]


no image
Design and application of a wire-driven bidirectional telescopic mechanism for workspace expansion with a focus on shipbuilding tasks

Lee, D., Chang, D., Shin, Y., Son, D., Kim, T., Lee, K., Kim, J.

Advanced Robotics, 25, 2011 (article)

pi

[BibTex]

[BibTex]


Thumb xl toc image
Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control

Fischer, P., Ghosh, A.

NANOSCALE, 3(2):557-563, 2011 (article)

Abstract
Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

pf

Video - Nanospropellers DOI [BibTex]


no image
Bayesian robot system identification with input and output noise

Ting, J., D’Souza, A., Schaal, S.

Neural Networks, 24(1):99-108, 2011, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl fosterembs2011
Combining wireless neural recording and video capture for the analysis of natural gait

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M. J., Shenoy, K.

In Proc. 5th Int. IEEE EMBS Conf. on Neural Engineering, pages: 613-616, IEEE, 2011 (inproceedings)

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
The Oxidation of Fe(111)

Davies, R., Edwards, D., Gräfe, J., Gilbert, L., Davies, P., Hutchings, G., Bowker, M.

Surface Science, 605(17-18):1754-1762, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Learning variable impedance control

Buchli, J., Stulp, F., Theodorou, E., Schaal, S.

International Journal of Robotics Research, 2011, clmc (article)

Abstract
One of the hallmarks of the performance, versatility, and robustness of biological motor control is the ability to adapt the impedance of the overall biomechanical system to different task requirements and stochastic disturbances. A transfer of this principle to robotics is desirable, for instance to enable robots to work robustly and safely in everyday human environments. It is, however, not trivial to derive variable impedance controllers for practical high degree-of-freedom (DOF) robotic tasks. In this contribution, we accomplish such variable impedance control with the reinforcement learning (RL) algorithm PISq ({f P}olicy {f I}mprovement with {f P}ath {f I}ntegrals). PISq is a model-free, sampling based learning method derived from first principles of stochastic optimal control. The PISq algorithm requires no tuning of algorithmic parameters besides the exploration noise. The designer can thus fully focus on cost function design to specify the task. From the viewpoint of robotics, a particular useful property of PISq is that it can scale to problems of many DOFs, so that reinforcement learning on real robotic systems becomes feasible. We sketch the PISq algorithm and its theoretical properties, and how it is applied to gain scheduling for variable impedance control. We evaluate our approach by presenting results on several simulated and real robots. We consider tasks involving accurate tracking through via-points, and manipulation tasks requiring physical contact with the environment. In these tasks, the optimal strategy requires both tuning of a reference trajectory emph{and} the impedance of the end-effector. The results show that we can use path integral based reinforcement learning not only for planning but also to derive variable gain feedback controllers in realistic scenarios. Thus, the power of variable impedance control is made available to a wide variety of robotic systems and practical applications.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Iterative path integral stochastic optimal control: Theory and applications to motor control

Theodorou, E. A.

University of Southern California, University of Southern California, Los Angeles, CA, 2011 (phdthesis)

am

PDF [BibTex]

PDF [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A.

Karlsruhe Institute of Technology, 2011 (mastersthesis)

am

[BibTex]

[BibTex]


Thumb xl toc image
Weak value amplified optical activity measurements

Pfeifer, M., Fischer, P.

Opt. Express, 19(17):16508-16517, OSA, 2011 (article)

Abstract
We present a new form of optical activity measurement based on a modified weak value amplification scheme. It has recently been shown experimentally that the left- and right-circular polarization components refract with slightly different angles of refraction at a chiral interface causing a linearly polarized light beam to split into two. By introducing a polarization modulation that does not give rise to a change in the optical rotation it is possible to differentiate between the two circular polarization components even after post-selection with a linear polarizer. We show that such a modified weak value amplification measurement permits the sign of the splitting and thus the handedness of the optically active medium to be determined. Angular beam separations of Δθ ∼ 1 nanoradian, which corresponds to a circular birefringence of Δn ∼ 1 × 10−9, could be measured with a relative error of less than 1%.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
High-resolution x-ray absorption spectroscopy of BaTiO_3: Experiment and first-principles calculations

Chassé, A., Borek, S., Schindler, K., Trautmann, M., Huth, M., Steudel, F., Makhova, L., Gräfe, J., Denecke, R.

Physical Review B, 84, pages: 195135, 2011 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Waalbot II: Adhesion recovery and improved performance of a climbing robot using fibrillar adhesives

Murphy, M. P., Kute, C., Mengüç, Y., Sitti, M.

The International Journal of Robotics Research, 30(1):118-133, SAGE Publications Sage UK: London, England, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Automated Control of AFM Based Nanomanipulation

Xie, H., Onal, C., Régnier, S., Sitti, M.

In Atomic Force Microscopy Based Nanorobotics, pages: 237-311, Springer Berlin Heidelberg, 2011 (incollection)

pi

[BibTex]

[BibTex]


no image
Automated 2-D nanoparticle manipulation using atomic force microscopy

Onal, C. D., Ozcan, O., Sitti, M.

IEEE Transactions on Nanotechnology, 10(3):472-481, IEEE, 2011 (article)

pi

[BibTex]

[BibTex]


no image
Design and analysis of a magnetically actuated and compliant capsule endoscopic robot

Yim, S., Sitti, M.

In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages: 4810-4815, 2011 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro-scale propulsion using multiple flexible artificial flagella

Singleton, J., Diller, E., Andersen, T., Regnier, S., Sitti, M.

In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages: 1687-1692, 2011 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Biaxial mechanical modeling of the small intestine

Bellini, C., Glass, P., Sitti, M., Di Martino, E. S.

Journal of the mechanical behavior of biomedical materials, 4(8):1727-1740, Elsevier, 2011 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl 1000dayimagesmall
Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

(J. Neural Engineering Highlights of 2011 Collection. JNE top 10 cited papers of 2010-2011.)

Simeral, J. D., Kim, S., Black, M. J., Donoghue, J. P., Hochberg, L. R.

J. of Neural Engineering, 8(2):025027, 2011 (article)

Abstract
The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

ps

pdf pdf from publisher link (url) Project Page [BibTex]


no image
Ferromagnetism of ZnO influenced by physical and chemical treatment

Chen, Y.

Universität Stuttgart, Stuttgart, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Herstellung und Charakterisierung von ultradünnen, funktionellen CoFeB Filmen

Streckenbach, F.

Hochschule Esslingen / Hochschule Aalen, Esslingen / Aalen, 2011 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Hydrogen adsorption on metal-organic frameworks

Streppel, B.

Universität Stuttgart, Stuttgart, 2011 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]