Header logo is



no image
Shape-Programmable Soft Capsule Robots for Semi-Implantable Drug Delivery

Yim, S., Sitti, M.

Mechatronics, IEEE/ASME Transactions on, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces

Diller, E., Floyd, S., Pawashe, C., Sitti, M.

IEEE Transactions on Robotics, 28(1):172-182, IEEE, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Gecko-Inspired Controllable Adhesive Structures Applied to Micromanipulation

Mengüç, Y., Yang, S. Y., Kim, S., Rogers, J. A., Sitti, M.

Advanced Functional Materials, 22(6):1245-1245, WILEY-VCH Verlag, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications

Yang, S. Y., Carlson, A., Cheng, H., Yu, Q., Ahmed, N., Wu, J., Kim, S., Sitti, M., Ferreira, P. M., Huang, Y., others,

Advanced Materials, 24(16):2117-2122, WILEY-VCH Verlag, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Effect of retraction speed on adhesion of elastomer fibrillar structures

Abusomwan, U., Sitti, M.

Applied Physics Letters, 101(21):211907, AIP, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Die Stabilität des stromtragenden Zustands in MgB2 Schichten mit modifizierter Mikrostruktur

Treiber, S.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Accelerated diffusion and phase transformations in Co-Cu alloys driven by the severe plastic deformation

Straumal, B. B., Mazilkin, A. A., Baretzky, B., Schütz, G., Rabkin, E., Valiev, R. Z.

{Special Issue on Advanced Materials Science in Bulk Nanostructured Metals}, 53(1):63-71, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unusual flux jumps above 12 K in non-homogeneous MgB2 thin films

Treiber, S., Stahl, C., Schütz, G., Albrecht, J.

{Superconductor Science \& Technology}, 25, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetism of nanostructured zinc oxide films

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Straumal, P. B., Myatiev, A. A., Schütz, G., Goering, E., Baretzky, B.

{The Physics of Metals and Metallography}, 113(13):1244-1256, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Frequencies and polarization vectors of phonons: Results from force constants which are fitted to experimental data or calculated ab initio

Illg, C., Meyer, B., Fähnle, M.

{Physical Review B}, 86(17), Published by the American Physical Society through the American Institute of Physics, Woodbury, NY, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary wetting by a second solid phase in the Zr-Nb alloys

Straumal, B. B., Gornakova, A. S., Kucheev, Y. O., Baretzky, B., Nekrasov, A. N.

{Journal of Materials Engineering and Performance}, 21(5):721-724, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Grain boundary wetting in the NdFeB-based hard magnetic alloys

Straumal, B. B., Kucheev, Y. O., Yatskovskaya, I. L., Mogilnikova, I. V., Schütz, G., Nekrasov, A. N., Baretzky, B.

{Journal of Materials Science}, 47(24):8352-8359, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl cvprlayers12crop
Layered segmentation and optical flow estimation over time

Sun, D., Sudderth, E., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1768-1775, IEEE, 2012 (inproceedings)

Abstract
Layered models provide a compelling approach for estimating image motion and segmenting moving scenes. Previous methods, however, have failed to capture the structure of complex scenes, provide precise object boundaries, effectively estimate the number of layers in a scene, or robustly determine the depth order of the layers. Furthermore, previous methods have focused on optical flow between pairs of frames rather than longer sequences. We show that image sequences with more frames are needed to resolve ambiguities in depth ordering at occlusion boundaries; temporal layer constancy makes this feasible. Our generative model of image sequences is rich but difficult to optimize with traditional gradient descent methods. We propose a novel discrete approximation of the continuous objective in terms of a sequence of depth-ordered MRFs and extend graph-cut optimization methods with new “moves” that make joint layer segmentation and motion estimation feasible. Our optimizer, which mixes discrete and continuous optimization, automatically determines the number of layers and reasons about their depth ordering. We demonstrate the value of layered models, our optimization strategy, and the use of more than two frames on both the Middlebury optical flow benchmark and the MIT layer segmentation benchmark.

ps

pdf sup mat poster Project Page Project Page [BibTex]

pdf sup mat poster Project Page Project Page [BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reinforcement Learning with Sequences of Motion Primitives for Robust Manipulation

Stulp, F., Theodorou, E., Schaal, S.

IEEE Transactions on Robotics, 2012 (article)

am

[BibTex]

[BibTex]


no image
Impact and Surface Tension in Water: a Study of Landing Bodies

Shih, B., Laham, L., Lee, K. J., Krasnoff, N., Diller, E., Sitti, M.

Bio-inspired Robotics Final Project, Carnegie Mellon University, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Design and rolling locomotion of a magnetically actuated soft capsule endoscope

Yim, S., Sitti, M.

IEEE Transactions on Robotics, 28(1):183-194, IEEE, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Design and manufacturing of a controllable miniature flapping wing robotic platform

Arabagi, V., Hines, L., Sitti, M.

The International Journal of Robotics Research, 31(6):785-800, SAGE Publications Sage UK: London, England, 2012 (article)

pi

[BibTex]

[BibTex]


no image
Chemotactic steering of bacteria propelled microbeads

Kim, D., Liu, A., Diller, E., Sitti, M.

Biomedical microdevices, 14(6):1009-1017, Springer US, 2012 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Hartmagnetische L10-FePt basierte gro\ssflächige Nanomuster mittels Nanoimprint-Lithografie

Bublat, T.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Magnetic proximity effect in YBa2Cu3O7 / La2/3Ca1/3MnO3 and YBa2Cu3O7 / LaMnO3+δsuperlattices

Satapathy, D. K., Uribe-Laverde, M. A., Marozau, I., Malik, V. K., Das, S., Wagner, T., Marcelot, C., Stahn, J., Brück, S., Rühm, A., Macke, S., Tietze, T., Goering, E., Frañó, A., Kim, J., Wu, M., Benckiser, E., Keimer, B., Devishvili, A., Toperverg, B. P., Merz, M., Nagel, P., Schuppler, S., Bernhard, C.

{Physical Review Letters}, 108, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Structural and chemical characterization on the nanoscale

Stierle, A., Carstanjen, H.-D., Hofmann, S.

In Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, pages: 233-254, Wiley-VCH, Weinheim, 2012 (incollection)

mms

[BibTex]

[BibTex]


no image
Noble gases and microporous frameworks; from interaction to application

Soleimani Dorcheh, A., Denysenko, D., Volkmer, D., Donner, W., Hirscher, M.

{Microporous and Mesoporous Materials}, 162, pages: 64-68, Elsevier, Amsterdam, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Note: Unique characterization possibilities in the ultra high vacuum scanning transmission x-ray microscope (UHV-STXM) "MAXYMUS" using a rotatable permanent magnetic field up to 0.22 T

Nolle, D., Weigand, M., Audehm, P., Goering, E., Wiesemann, U., Wolter, C., Nolle, E., Schütz, G.

{Review of Scientific Instruments}, 83(4), 2012 (article)

mms

DOI [BibTex]


no image
Rutherford Backscattering

Carstanjen, H. D.

In Nanoelectronics and Information Technology. Advanced Electronic Materials and Novel Devices, pages: 250-252, WILEY-VCH Verlag, Weinheim, Germany, 2012 (incollection)

mms

[BibTex]

[BibTex]


no image
Microstructure and superconducting properties of MgB2 films prepared by solid state reaction of multilayer precursors of the elements

Kugler, B., Stahl, C., Treiber, S., Soltan, S., Haug, S., Schütz, G., Albrecht, J.

{Thin Solid Films}, 520, pages: 6985-6988, 2012 (article)

mms

DOI [BibTex]

DOI [BibTex]


Thumb xl bookcdc4cv
Consumer Depth Cameras for Computer Vision - Research Topics and Applications

Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.

Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)

ps

workshop publisher's site [BibTex]

workshop publisher's site [BibTex]


Thumb xl amdo2012v2
Spatial Measures between Human Poses for Classification and Understanding

Soren Hauberg, Kim S. Pedersen

In Articulated Motion and Deformable Objects, 7378, pages: 26-36, LNCS, (Editors: Perales, Francisco J. and Fisher, Robert B. and Moeslund, Thomas B.), Springer Berlin Heidelberg, 2012 (inproceedings)

ps

Publishers site Project Page [BibTex]

Publishers site Project Page [BibTex]


Thumb xl nips teaser
A Geometric Take on Metric Learning

Hauberg, S., Freifeld, O., Black, M. J.

In Advances in Neural Information Processing Systems (NIPS) 25, pages: 2033-2041, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the structure of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensionality reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Riemannian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data.

ps

PDF Youtube Suppl. material Poster Project Page [BibTex]

PDF Youtube Suppl. material Poster Project Page [BibTex]

2008


no image
BCPy2000

Hill, N., Schreiner, T., Puzicha, C., Farquhar, J.

Workshop "Machine Learning Open-Source Software" at NIPS, December 2008 (talk)

ei

Web [BibTex]

2008


Web [BibTex]


no image
Stereo Matching for Calibrated Cameras without Correspondence

Helmke, U., Hüper, K., Vences, L.

In CDC 2008, pages: 2408-2413, IEEE Service Center, Piscataway, NJ, USA, 47th IEEE Conference on Decision and Control, December 2008 (inproceedings)

Abstract
We study the stereo matching problem for reconstruction of the location of 3D-points on an unknown surface patch from two calibrated identical cameras without using any a priori information about the pointwise correspondences. We assume that camera parameters and the pose between the cameras are known. Our approach follows earlier work for coplanar cameras where a gradient flow algorithm was proposed to match associated Gramians. Here we extend this method by allowing arbitrary poses for the cameras. We introduce an intrinsic Riemannian Newton algorithm that achieves local quadratic convergence rates. A closed form solution is presented, too. The efficiency of both algorithms is demonstrated by numerical experiments.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Joint Kernel Support Estimation for Structured Prediction

Lampert, C., Blaschko, M.

In Proceedings of the NIPS 2008 Workshop on "Structured Input - Structured Output" (NIPS SISO 2008), pages: 1-4, NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (inproceedings)

Abstract
We present a new technique for structured prediction that works in a hybrid generative/ discriminative way, using a one-class support vector machine to model the joint probability of (input, output)-pairs in a joint reproducing kernel Hilbert space. Compared to discriminative techniques, like conditional random elds or structured out- put SVMs, the proposed method has the advantage that its training time depends only on the number of training examples, not on the size of the label space. Due to its generative aspect, it is also very tolerant against ambiguous, incomplete or incorrect labels. Experiments on realistic data show that our method works eciently and robustly in situations for which discriminative techniques have computational or statistical problems.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Frequent Subgraph Retrieval in Geometric Graph Databases

Nowozin, S., Tsuda, K.

In ICDM 2008, pages: 953-958, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Computer Society, Los Alamitos, CA, USA, 8th IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric $epsilon$-subgraphs under the entire class of rigid geometric transformations in a database. By using geometric$epsilon$-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is lar ger than for non-geometric graph mining,the total time is within a reasonable level even for small minimum support.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Block Iterative Algorithms for Non-negative Matrix Approximation

Sra, S.

In ICDM 2008, pages: 1037-1042, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Service Center, Piscataway, NJ, USA, Eighth IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
In this paper we present new algorithms for non-negative matrix approximation (NMA), commonly known as the NMF problem. Our methods improve upon the well-known methods of Lee & Seung~cite{lee00} for both the Frobenius norm as well the Kullback-Leibler divergence versions of the problem. For the latter problem, our results are especially interesting because it seems to have witnessed much lesser algorithmic progress as compared to the Frobenius norm NMA problem. Our algorithms are based on a particular textbf {block-iterative} acceleration technique for EM, which preserves the multiplicative nature of the updates and also ensures monotonicity. Furthermore, our algorithms also naturally apply to the Bregman-divergence NMA algorithms of~cite{suv.nips}. Experimentally, we show that our algorithms outperform the traditional Lee/Seung approach most of the time.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Bayesian Approach to Switching Linear Gaussian State-Space Models for Unsupervised Time-Series Segmentation

Chiappa, S.

In ICMLA 2008, pages: 3-9, (Editors: Wani, M. A., X.-W. Chen, D. Casasent, L. Kurgan, T. Hu, K. Hafeez), IEEE Computer Society, Los Alamitos, CA, USA, 7th International Conference on Machine Learning and Applications, December 2008 (inproceedings)

Abstract
Time-series segmentation in the fully unsupervised scenario in which the number of segment-types is a priori unknown is a fundamental problem in many applications. We propose a Bayesian approach to a segmentation model based on the switching linear Gaussian state-space model that enforces a sparse parametrization, such as to use only a small number of a priori available different dynamics to explain the data. This enables us to estimate the number of segment-types within the model, in contrast to previous non-Bayesian approaches where training and comparing several separate models was required. As the resulting model is computationally intractable, we introduce a variational approximation where a reformulation of the problem enables the use of efficient inference algorithms.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Logistic Regression for Graph Classification

Shervashidze, N., Tsuda, K.

NIPS Workshop on "Structured Input - Structured Output" (NIPS SISO), December 2008 (talk)

Abstract
In this paper we deal with graph classification. We propose a new algorithm for performing sparse logistic regression for graphs, which is comparable in accuracy with other methods of graph classification and produces probabilistic output in addition. Sparsity is required for the reason of interpretability, which is often necessary in domains such as bioinformatics or chemoinformatics.

ei

Web [BibTex]

Web [BibTex]


no image
New Projected Quasi-Newton Methods with Applications

Sra, S.

Microsoft Research Tech-talk, December 2008 (talk)

Abstract
Box-constrained convex optimization problems are central to several applications in a variety of fields such as statistics, psychometrics, signal processing, medical imaging, and machine learning. Two fundamental examples are the non-negative least squares (NNLS) problem and the non-negative Kullback-Leibler (NNKL) divergence minimization problem. The non-negativity constraints are usually based on an underlying physical restriction, for e.g., when dealing with applications in astronomy, tomography, statistical estimation, or image restoration, the underlying parameters represent physical quantities such as concentration, weight, intensity, or frequency counts and are therefore only interpretable with non-negative values. Several modern optimization methods can be inefficient for simple problems such as NNLS and NNKL as they are really designed to handle far more general and complex problems. In this work we develop two simple quasi-Newton methods for solving box-constrained (differentiable) convex optimization problems that utilize the well-known BFGS and limited memory BFGS updates. We position our method between projected gradient (Rosen, 1960) and projected Newton (Bertsekas, 1982) methods, and prove its convergence under a simple Armijo step-size rule. We illustrate our method by showing applications to: Image deblurring, Positron Emission Tomography (PET) image reconstruction, and Non-negative Matrix Approximation (NMA). On medium sized data we observe performance competitive to established procedures, while for larger data the results are even better.

ei

PDF [BibTex]

PDF [BibTex]


no image
Iterative Subgraph Mining for Principal Component Analysis

Saigo, H., Tsuda, K.

In ICDM 2008, pages: 1007-1012, (Editors: Giannotti, F. , D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, X. Wu), IEEE Computer Society, Los Alamitos, CA, USA, IEEE International Conference on Data Mining, December 2008 (inproceedings)

Abstract
Graph mining methods enumerate frequent subgraphs efficiently, but they are not necessarily good features for machine learning due to high correlation among features. Thus it makes sense to perform principal component analysis to reduce the dimensionality and create decorrelated features. We present a novel iterative mining algorithm that captures informative patterns corresponding to major entries of top principal components. It repeatedly calls weighted substructure mining where example weights are updated in each iteration. The Lanczos algorithm, a standard algorithm of eigendecomposition, is employed to update the weights. In experiments, our patterns are shown to approximate the principal components obtained by frequent mining.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism

Goris, R., Wagemans, J., Wichmann, F.

Journal of Vision, 8(15):1-21, November 2008 (article)

Abstract
Computational models of spatial vision typically make use of a (rectified) linear filter, a nonlinearity and dominant late noise to account for human contrast discrimination data. Linear–nonlinear cascade models predict an improvement in observers' contrast detection performance when low, subthreshold levels of external noise are added (i.e., stochastic resonance). Here, we address the issue whether a single contrast gain-control model of early spatial vision can account for both the pedestal effect, i.e., the improved detectability of a grating in the presence of a low-contrast masking grating, and stochastic resonance. We measured contrast discrimination performance without noise and in both weak and moderate levels of noise. Making use of a full quantitative description of our data with few parameters combined with comprehensive model selection assessments, we show the pedestal effect to be more reduced in the presence of weak noise than in moderate noise. This reduction rules out independent, additive sources of performance improvement and, together with a simulation study, supports the parsimonious explanation that a single mechanism underlies the pedestal effect and stochastic resonance in contrast perception.

ei

Web DOI [BibTex]


no image
Frequent Subgraph Retrieval in Geometric Graph Databases

Nowozin, S., Tsuda, K.

(180), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2008 (techreport)

Abstract
Discovery of knowledge from geometric graph databases is of particular importance in chemistry and biology, because chemical compounds and proteins are represented as graphs with 3D geometric coordinates. In such applications, scientists are not interested in the statistics of the whole database. Instead they need information about a novel drug candidate or protein at hand, represented as a query graph. We propose a polynomial-delay algorithm for geometric frequent subgraph retrieval. It enumerates all subgraphs of a single given query graph which are frequent geometric epsilon-subgraphs under the entire class of rigid geometric transformations in a database. By using geometric epsilon-subgraphs, we achieve tolerance against variations in geometry. We compare the proposed algorithm to gSpan on chemical compound data, and we show that for a given minimum support the total number of frequent patterns is substantially limited by requiring geometric matching. Although the computation time per pattern is larger than for non-geometric graph mining, the total time is within a reasonable level even for small minimum support.

ei

PDF [BibTex]

PDF [BibTex]


no image
gBoost: A Mathematical Programming Approach to Graph Classification and Regression

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.

Machine Learning, 75(1):69-89, November 2008 (article)

Abstract
Graph mining methods enumerate frequently appearing subgraph patterns, which can be used as features for subsequent classification or regression. However, frequent patterns are not necessarily informative for the given learning problem. We propose a mathematical programming boosting method (gBoost) that progressively collects informative patterns. Compared to AdaBoost, gBoost can build the prediction rule with fewer iterations. To apply the boosting method to graph data, a branch-and-bound pattern search algorithm is developed based on the DFS code tree. The constructed search space is reused in later iterations to minimize the computation time. Our method can learn more efficiently than the simpler method based on frequent substructure mining, because the output labels are used as an extra information source for pruning the search space. Furthermore, by engineering the mathematical program, a wide range of machine learning problems can be solved without modifying the pattern search algorithm.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Variational Bayesian Model Selection in Linear Gaussian State-Space based Models

Chiappa, S.

International Workshop on Flexible Modelling: Smoothing and Robustness (FMSR 2008), 2008, pages: 1, November 2008 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Machine Learning for Motor Skills in Robotics

Peters, J.

K{\"u}nstliche Intelligenz, 2008(4):41-43, November 2008 (article)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and the cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks of future robots. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator and humanoid robotics and usually scaling was only achieved in precisely pre-structured domains. We have investigated the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two major components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernels, Regularization and Differential Equations

Steinke, F., Schölkopf, B.

Pattern Recognition, 41(11):3271-3286, November 2008 (article)

Abstract
Many common machine learning methods such as Support Vector Machines or Gaussian process inference make use of positive definite kernels, reproducing kernel Hilbert spaces, Gaussian processes, and regularization operators. In this work these objects are presented in a general, unifying framework, and interrelations are highlighted. With this in mind we then show how linear stochastic differential equation models can be incorporated naturally into the kernel framework. And vice versa, many kernel machines can be interpreted in terms of differential equations. We focus especially on ordinary differential equations, also known as dynamical systems, and it is shown that standard kernel inference algorithms are equivalent to Kalman filter methods based on such models. In order not to cloud qualitative insights with heavy mathematical machinery, we restrict ourselves to finite domains, implying that differential equations are treated via their corresponding finite difference equations.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Probabilistic Inference for Fast Learning in Control

Rasmussen, CE., Deisenroth, MP.

In EWRL 2008, pages: 229-242, (Editors: Girgin, S. , M. Loth, R. Munos, P. Preux, D. Ryabko), Springer, Berlin, Germany, 8th European Workshop on Reinforcement Learning, November 2008 (inproceedings)

Abstract
We provide a novel framework for very fast model-based reinforcement learning in continuous state and action spaces. The framework requires probabilistic models that explicitly characterize their levels of confidence. Within this framework, we use flexible, non-parametric models to describe the world based on previously collected experience. We demonstrate learning on the cart-pole problem in a setting where we provide very limited prior knowledge about the task. Learning progresses rapidly, and a good policy is found after only a hand-full of iterations.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]