Header logo is


2020


no image
Measuring the Costs of Planning

Felso, V., Jain, Y. R., Lieder, F.

CogSci 2020, July 2020 (poster) Accepted

Abstract
Which information is worth considering depends on how much effort it would take to acquire and process it. From this perspective people’s tendency to neglect considering the long-term consequences of their actions (present bias) might reflect that looking further into the future becomes increasingly more effortful. In this work, we introduce and validate the use of Bayesian Inverse Reinforcement Learning (BIRL) for measuring individual differences in the subjective costs of planning. We extend the resource-rational model of human planning introduced by Callaway, Lieder, et al. (2018) by parameterizing the cost of planning. Using BIRL, we show that increased subjective cost for considering future outcomes may be associated with both the present bias and acting without planning. Our results highlight testing the causal effects of the cost of planning on both present bias and mental effort avoidance as a promising direction for future work.

re

[BibTex]

2020


[BibTex]

2008


no image
Efficient inverse kinematics algorithms for highdimensional movement systems

Tevatia, G., Schaal, S.

CLMC Technical Report: TR-CLMC-2008-1, 2008, clmc (techreport)

Abstract
Real-time control of the endeffector of a humanoid robot in external coordinates requires computationally efficient solutions of the inverse kinematics problem. In this context, this paper investigates methods of resolved motion rate control (RMRC) that employ optimization criteria to resolve kinematic redundancies. In particular we focus on two established techniques, the pseudo inverse with explicit optimization and the extended Jacobian method. We prove that the extended Jacobian method includes pseudo-inverse methods as a special solution. In terms of computational complexity, however, pseudo-inverse and extended Jacobian differ significantly in favor of pseudo-inverse methods. Employing numerical estimation techniques, we introduce a computationally efficient version of the extended Jacobian with performance comparable to the original version. Our results are illustrated in simulation studies with a multiple degree-offreedom robot, and were evaluated on an actual 30 degree-of-freedom full-body humanoid robot.

am

link (url) [BibTex]

2008


link (url) [BibTex]

2007


no image
Relative Entropy Policy Search

Peters, J.

CLMC Technical Report: TR-CLMC-2007-2, Computational Learning and Motor Control Lab, Los Angeles, CA, 2007, clmc (techreport)

Abstract
This technical report describes a cute idea of how to create new policy search approaches. It directly relates to the Natural Actor-Critic methods but allows the derivation of one shot solutions. Future work may include the application to interesting problems.

am ei

PDF link (url) [BibTex]

2007


PDF link (url) [BibTex]


no image
Learning an Outlier-Robust Kalman Filter

Ting, J., Theodorou, E., Schaal, S.

CLMC Technical Report: TR-CLMC-2007-1, Los Angeles, CA, 2007, clmc (techreport)

Abstract
We introduce a modified Kalman filter that performs robust, real-time outlier detection, without the need for manual parameter tuning by the user. Systems that rely on high quality sensory data (for instance, robotic systems) can be sensitive to data containing outliers. The standard Kalman filter is not robust to outliers, and other variations of the Kalman filter have been proposed to overcome this issue. However, these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation procedures. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step?s state. Using an incremental variational Expectation-Maximization framework, we learn the weights and system dynamics. We evaluate our Kalman filter algorithm on data from a robotic dog.

am

PDF [BibTex]

PDF [BibTex]