Header logo is



{GENTEL : GENerating Training data Efficiently for Learning to segment medical images}
GENTEL : GENerating Training data Efficiently for Learning to segment medical images

Thakur, R. P., Rocamora, S. P., Goel, L., Pohmann, R., Machann, J., Black, M. J.

Congrès Reconnaissance des Formes, Image, Apprentissage et Perception (RFAIP), June 2020 (conference)

Abstract
Accurately segmenting MRI images is crucial for many clinical applications. However, manually segmenting images with accurate pixel precision is a tedious and time consuming task. In this paper we present a simple, yet effective method to improve the efficiency of the image segmentation process. We propose to transform the image annotation task into a binary choice task. We start by using classical image processing algorithms with different parameter values to generate multiple, different segmentation masks for each input MRI image. Then, instead of segmenting the pixels of the images, the user only needs to decide whether a segmentation is acceptable or not. This method allows us to efficiently obtain high quality segmentations with minor human intervention. With the selected segmentations, we train a state-of-the-art neural network model. For the evaluation, we use a second MRI dataset (1.5T Dataset), acquired with a different protocol and containing annotations. We show that the trained network i) is able to automatically segment cases where none of the classical methods obtain a high quality result ; ii) generalizes to the second MRI dataset, which was acquired with a different protocol and was never seen at training time ; and iii) enables detection of miss-annotations in this second dataset. Quantitatively, the trained network obtains very good results: DICE score - mean 0.98, median 0.99- and Hausdorff distance (in pixels) - mean 4.7, median 2.0-.

ps

[BibTex]

[BibTex]


Learning to Dress 3D People in Generative Clothing
Learning to Dress 3D People in Generative Clothing

Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses.

ps

arxiv project page code [BibTex]


Generating 3D People in Scenes without People
Generating 3D People in Scenes without People

Zhang, Y., Hassan, M., Neumann, H., Black, M. J., Tang, S.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
We present a fully automatic system that takes a 3D scene and generates plausible 3D human bodies that are posed naturally in that 3D scene. Given a 3D scene without people, humans can easily imagine how people could interact with the scene and the objects in it. However, this is a challenging task for a computer as solving it requires that (1) the generated human bodies to be semantically plausible within the 3D environment (e.g. people sitting on the sofa or cooking near the stove), and (2) the generated human-scene interaction to be physically feasible such that the human body and scene do not interpenetrate while, at the same time, body-scene contact supports physical interactions. To that end, we make use of the surface-based 3D human model SMPL-X. We first train a conditional variational autoencoder to predict semantically plausible 3D human poses conditioned on latent scene representations, then we further refine the generated 3D bodies using scene constraints to enforce feasible physical interaction. We show that our approach is able to synthesize realistic and expressive 3D human bodies that naturally interact with 3D environment. We perform extensive experiments demonstrating that our generative framework compares favorably with existing methods, both qualitatively and quantitatively. We believe that our scene-conditioned 3D human generation pipeline will be useful for numerous applications; e.g. to generate training data for human pose estimation, in video games and in VR/AR. Our project page for data and code can be seen at: \url{https://vlg.inf.ethz.ch/projects/PSI/}.

ps

Code PDF [BibTex]

Code PDF [BibTex]


Learning Physics-guided Face Relighting under Directional Light
Learning Physics-guided Face Relighting under Directional Light

Nestmeyer, T., Lalonde, J., Matthews, I., Lehrmann, A. M.

In Conference on Computer Vision and Pattern Recognition, IEEE/CVF, June 2020 (inproceedings) Accepted

Abstract
Relighting is an essential step in realistically transferring objects from a captured image into another environment. For example, authentic telepresence in Augmented Reality requires faces to be displayed and relit consistent with the observer's scene lighting. We investigate end-to-end deep learning architectures that both de-light and relight an image of a human face. Our model decomposes the input image into intrinsic components according to a diffuse physics-based image formation model. We enable non-diffuse effects including cast shadows and specular highlights by predicting a residual correction to the diffuse render. To train and evaluate our model, we collected a portrait database of 21 subjects with various expressions and poses. Each sample is captured in a controlled light stage setup with 32 individual light sources. Our method creates precise and believable relighting results and generalizes to complex illumination conditions and challenging poses, including when the subject is not looking straight at the camera.

ps

Paper [BibTex]

Paper [BibTex]


{VIBE}: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation

Kocabas, M., Athanasiou, N., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methodsfail to produce accurate and natural motion sequences due to a lack of ground-truth 3D motion data for training. To address this problem, we propose “Video Inference for Body Pose and Shape Estimation” (VIBE), which makes use of an existing large-scale motion capture dataset (AMASS) together with unpaired, in-the-wild, 2D keypoint annotations. Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a temporal network architecture and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels. We perform extensive experimentation to analyze the importance of motion and demonstrate the effectiveness of VIBE on challenging 3D pose estimation datasets, achieving state-of-the-art performance. Code and pretrained models are available at https://github.com/mkocabas/VIBE

ps

arXiv code video supplemental video [BibTex]


FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain
FootTile: a Rugged Foot Sensor for Force and Center of Pressure Sensing in Soft Terrain

Felix Ruppert, , Badri-Spröwitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, International Conference on Robotics and Automation, May 2020 (inproceedings) Accepted

Abstract
In this paper, we present FootTile, a foot sensor for reaction force and center of pressure sensing in challenging terrain. We compare our sensor design to standard biomechanical devices, force plates and pressure plates. We show that FootTile can accurately estimate force and pressure distribution during legged locomotion. FootTile weighs 0.9g, has a sampling rate of 330 Hz, a footprint of 10×10 mm and can easily be adapted in sensor range to the required load case. In three experiments, we validate: first, the performance of the individual sensor, second an array of FootTiles for center of pressure sensing and third the ground reaction force estimation during locomotion in granular substrate. We then go on to show the accurate sensing capabilities of the waterproof sensor in liquid mud, as a showcase for real world rough terrain use.

dlg

Youtube1 Youtube2 Presentation link (url) [BibTex]

Youtube1 Youtube2 Presentation link (url) [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

arXiv [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

ps

pdf [BibTex]

pdf [BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Optimizing Rank-based Metrics with Blackbox Differentiation
Optimizing Rank-based Metrics with Blackbox Differentiation

Rolinek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, 2020, Best paper nomination (inproceedings)

Abstract
Rank-based metrics are some of the most widely used criteria for performance evaluation of computer vision models. Despite years of effort, direct optimization for these metrics remains a challenge due to their non-differentiable and non-decomposable nature. We present an efficient, theoretically sound, and general method for differentiating rank-based metrics with mini-batch gradient descent. In addition, we address optimization instability and sparsity of the supervision signal that both arise from using rank-based metrics as optimization targets. Resulting losses based on recall and Average Precision are applied to image retrieval and object detection tasks. We obtain performance that is competitive with state-of-the-art on standard image retrieval datasets and consistently improve performance of near state-of-the-art object detectors.

al

Code Long Oral Short Oral Arxiv Project Page [BibTex]

Code Long Oral Short Oral Arxiv Project Page [BibTex]

2008


Learning Optical Flow
Learning Optical Flow

Sun, D., Roth, S., Lewis, J., Black, M. J.

In European Conf. on Computer Vision, ECCV, 5304, pages: 83-97, LNCS, (Editors: Forsyth, D. and Torr, P. and Zisserman, A.), Springer-Verlag, October 2008 (inproceedings)

Abstract
Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation methods. In contrast to standard heuristic formulations, we learn a statistical model of both brightness constancy error and the spatial properties of optical flow using image sequences with associated ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifically, the ground truth enables us to model how the assumption of brightness constancy is violated in naturalistic sequences, resulting in a probabilistic model of "brightness inconstancy". We also generalize previous high-order constancy assumptions, such as gradient constancy, by modeling the constancy of responses to various linear filters in a high-order random field framework. These filters are free variables that can be learned from training data. Additionally we study the spatial structure of the optical flow and how motion boundaries are related to image intensity boundaries. Spatial smoothness is modeled using a Steerable Random Field, where spatial derivatives of the optical flow are steered by the image brightness structure. These models provide a statistical motivation for previous methods and enable the learning of all parameters from training data. All proposed models are quantitatively compared on the Middlebury flow dataset.

ps

pdf Springerlink version [BibTex]

2008


pdf Springerlink version [BibTex]


no image
Probabilistic Roadmap Method and Real Time Gait Changing Technique Implementation for Travel Time Optimization on a Designed Six-legged Robot

Ahmad, A., Dhang, N.

In pages: 1-5, 39th International Symposium on Robotics (ISR), October 2008 (inproceedings)

Abstract
This paper presents design and development of a six legged robot with a total of 12 degrees of freedom, two in each limb and then an implementation of 'obstacle and undulated terrain-based' probabilistic roadmap method for motion planning of this hexaped which is able to negotiate large undulations as obstacles. The novelty in this implementation is that, it doesnt require the complete view of the robot's configuration space at any given time during the traversal. It generates a map of the area that is in visibility range and finds the best suitable point in that field of view to make it as the next node of the algorithm. A particular category of undulations which are small enough are automatically 'run-over' as a part of the terrain and not considered as obstacles. The traversal between the nodes is optimized by taking the shortest path and the most optimum gait at that instance which the hexaped can assume. This is again a novel approach to have a real time gait changing technique to optimize the travel time. The hexaped limb can swing in the robot's X-Y plane and the lower link of the limb can move in robot's Z plane by an implementation of a four-bar mechanism. A GUI based server 'Yellow Ladybird' eventually which is the name of the hexaped, is made for real time monitoring and communicating to it the final destination co-ordinates.

ps

link (url) [BibTex]


The naked truth: Estimating body shape under clothing,
The naked truth: Estimating body shape under clothing,

Balan, A., Black, M. J.

In European Conf. on Computer Vision, ECCV, 5304, pages: 15-29, LNCS, (Editors: D. Forsyth and P. Torr and A. Zisserman), Springer-Verlag, Marseilles, France, October 2008 (inproceedings)

Abstract
We propose a method to estimate the detailed 3D shape of a person from images of that person wearing clothing. The approach exploits a model of human body shapes that is learned from a database of over 2000 range scans. We show that the parameters of this shape model can be recovered independently of body pose. We further propose a generalization of the visual hull to account for the fact that observed silhouettes of clothed people do not provide a tight bound on the true 3D shape. With clothed subjects, different poses provide different constraints on the possible underlying 3D body shape. We consequently combine constraints across pose to more accurately estimate 3D body shape in the presence of occluding clothing. Finally we use the recovered 3D shape to estimate the gender of subjects and then employ gender-specific body models to refine our shape estimates. Results on a novel database of thousands of images of clothed and "naked" subjects, as well as sequences from the HumanEva dataset, suggest the method may be accurate enough for biometric shape analysis in video.

ps

pdf pdf with higher quality images Springerlink version YouTube video on applications data slides [BibTex]

pdf pdf with higher quality images Springerlink version YouTube video on applications data slides [BibTex]


Dynamic time warping for binocular hand tracking and reconstruction
Dynamic time warping for binocular hand tracking and reconstruction

Romero, J., Kragic, D., Kyrki, V., Argyros, A.

In IEEE International Conference on Robotics and Automation,ICRA, pages: 2289 -2294, May 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


Passive compliant quadruped robot using central pattern generators for locomotion control
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Spröwitz, A., Righetti, L., Ijspeert, A. J.

In Proceedings of the 2008 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, AZ, 2008 (inproceedings)

Abstract
We present a new quadruped robot, “Cheetah”, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a Bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

dlg

DOI [BibTex]

DOI [BibTex]


Graph signature for self-reconfiguration planning
Graph signature for self-reconfiguration planning

Asadpour, M., Spröwitz, A., Billard, A., Dillenbourg, P., Ijspeert, A. J.

In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 863-869, IEEE, Nice, 2008 (inproceedings)

Abstract
This project incorporates modular robots as build- ing blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection / disconnection of modules and rotations of the degrees of freedom. This paper introduces a new approach to self-reconfiguration planning for modular robots based on the graph signature and the graph edit-distance. The method has been tested in simulation on two type of modules: YaMoR and M-TRAN. The simulation results shows interesting features of the approach, namely rapidly finding a near-optimal solution.

dlg

DOI [BibTex]

DOI [BibTex]


An active connection mechanism for modular self-reconfigurable robotic systems based on physical latching
An active connection mechanism for modular self-reconfigurable robotic systems based on physical latching

Spröwitz, A., Asadpour, M., Bourquin, Y., Ijspeert, A. J.

In Proceedings on the 2008 IEEE International Conference on Robotics and Automation (ICRA), 2008, pages: 3508-3513, IEEE, Pasadena, CA, 2008 (inproceedings)

Abstract
This article presents a robust and heavy duty physical latching connection mechanism, which can be actuated with DC motors to actively connect and disconnect modular robot units. The special requirements include a lightweight and simple construction providing an active, strong, hermaphrodite, completely retractable connection mechanism with a 90 degree symmetry and a no-energy consumption in the locked state. The mechanism volume is kept small to fit multiple copies into a single modular robot unit and to be used on as many faces of the robot unit as possible. This way several different lattice like modular robot structures are possible. The large selection for dock-able connection positions will likely simplify self-reconfiguration strategies. Tests with the implemented mechanism demonstrate its applicative potential for self-reconfiguring modular robots.

dlg

DOI [BibTex]

DOI [BibTex]


Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects
Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects

Kjellström, H., Romero, J., Martinez, D., Kragic, D.

In European Conference on Computer Vision, ECCV, pages: 336-349, 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
Tuning analysis of motor cortical neurons in a person with paralysis during performance of visually instructed cursor control tasks

Kim, S., Simeral, J. D., Hochberg, L. R., Truccolo, W., Donoghue, J., Friehs, G. M., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


Infinite Kernel Learning
Infinite Kernel Learning

Gehler, P., Nowozin, S.

In Proceedings of NIPS 2008 Workshop on "Kernel Learning: Automatic Selection of Optimal Kernels", 2008 (inproceedings)

ps

project page pdf [BibTex]

project page pdf [BibTex]


Visual Recognition of Grasps for Human-to-Robot Mapping
Visual Recognition of Grasps for Human-to-Robot Mapping

Kjellström, H., Romero, J., Kragic, D.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pages: 3192-3199, 2008 (inproceedings)

ps

Pdf [BibTex]

Pdf [BibTex]


no image
More than two years of intracortically-based cursor control via a neural interface system

Hochberg, L. R., Simeral, J. D., Kim, S., Stein, J., Friehs, G. M., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
Emergence of Interaction Among Adaptive Agents

Martius, G., Nolfi, S., Herrmann, J. M.

In Proc. From Animals to Animats 10 (SAB 2008), 5040, pages: 457-466, LNCS, Springer, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Decoding of reach and grasp from MI population spiking activity using a low-dimensional model of hand and arm posture

Yadollahpour, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


no image
Structure from Behavior in Autonomous Agents

Martius, G., Fiedler, K., Herrmann, J.

In Proc. IEEE Intl. Conf. Intelligent Robots and Systems (IROS 2008), pages: 858 - 862, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Neural activity in the motor cortex of humans with tetraplegia

Donoghue, J., Simeral, J., Black, M., Kim, S., Truccolo, W., Hochberg, L.

AREADNE Research in Encoding And Decoding of Neural Ensembles, June, Santorini, Greece, 2008 (conference)

ps

[BibTex]

[BibTex]


Combined discriminative and generative articulated pose and non-rigid shape estimation
Combined discriminative and generative articulated pose and non-rigid shape estimation

Sigal, L., Balan, A., Black, M. J.

In Advances in Neural Information Processing Systems 20, NIPS-2007, pages: 1337–1344, MIT Press, 2008 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Reconstructing reach and grasp actions using neural population activity from Primary Motor Cortex

Vargas-Irwin, C. E., Yadollahpour, P., Shakhnarovich, G., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

ps

[BibTex]

[BibTex]


Nonrigid Structure from Motion in Trajectory Space
Nonrigid Structure from Motion in Trajectory Space

Akhter, I., Sheikh, Y., Khan, S., Kanade, T.

In Neural Information Processing Systems, 1(2):41-48, 2008 (inproceedings)

Abstract
Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes, which have to be estimated anew for each video sequence. In contrast, we propose that the evolving 3D structure be described by a linear combination of basis trajectories. The principal advantage of this approach is that we do not need to estimate any basis vectors during computation. We show that generic bases over trajectories, such as the Discrete Cosine Transform (DCT) basis, can be used to compactly describe most real motions. This results in a significant reduction in unknowns, and corresponding stability in estimation. We report empirical performance, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions including piece-wise rigid motion, partially nonrigid motion (such as a facial expression), and highly nonrigid motion (such as a person dancing).

ps

pdf project page [BibTex]

pdf project page [BibTex]

2007


A Database and Evaluation Methodology for Optical Flow
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

ps

pdf [BibTex]

2007


pdf [BibTex]


Shining a light on human pose: On shadows, shading and the estimation of pose and shape,
Shining a light on human pose: On shadows, shading and the estimation of pose and shape,

Balan, A., Black, M. J., Haussecker, H., Sigal, L.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

ps

pdf YouTube [BibTex]

pdf YouTube [BibTex]


no image
Ensemble spiking activity as a source of cortical control signals in individuals with tetraplegia

Simeral, J. D., Kim, S. P., Black, M. J., Donoghue, J. P., Hochberg, L. R.

Biomedical Engineering Society, BMES, september 2007 (conference)

ps

[BibTex]

[BibTex]


Detailed human shape and pose from images
Detailed human shape and pose from images

Balan, A., Sigal, L., Black, M. J., Davis, J., Haussecker, H.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, pages: 1-8, Minneapolis, June 2007 (inproceedings)

Abstract
Much of the research on video-based human motion capture assumes the body shape is known a priori and is represented coarsely (e.g. using cylinders or superquadrics to model limbs). These body models stand in sharp contrast to the richly detailed 3D body models used by the graphics community. Here we propose a method for recovering such models directly from images. Specifically, we represent the body using a recently proposed triangulated mesh model called SCAPE which employs a low-dimensional, but detailed, parametric model of shape and pose-dependent deformations that is learned from a database of range scans of human bodies. Previous work showed that the parameters of the SCAPE model could be estimated from marker-based motion capture data. Here we go further to estimate the parameters directly from image data. We define a cost function between image observations and a hypothesized mesh and formulate the problem as optimization over the body shape and pose parameters using stochastic search. Our results show that such rich generative models enable the automatic recovery of detailed human shape and pose from images.

ps

pdf YouTube [BibTex]

pdf YouTube [BibTex]


Decoding grasp aperture from motor-cortical population activity
Decoding grasp aperture from motor-cortical population activity

Artemiadis, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 518-521, May 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Multi-state decoding of point-and-click control signals from motor cortical activity in a human with tetraplegia
Multi-state decoding of point-and-click control signals from motor cortical activity in a human with tetraplegia

Kim, S., Simeral, J., Hochberg, L., Donoghue, J. P., Friehs, G., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 486-489, May 2007 (inproceedings)

Abstract
Basic neural-prosthetic control of a computer cursor has been recently demonstrated by Hochberg et al. [1] using the BrainGate system (Cyberkinetics Neurotechnology Systems, Inc.). While these results demonstrate the feasibility of intracortically-driven prostheses for humans with paralysis, a practical cursor-based computer interface requires more precise cursor control and the ability to “click” on areas of interest. Here we present a practical point and click device that decodes both continuous states (e.g. cursor kinematics) and discrete states (e.g. click state) from single neural population in human motor cortex. We describe a probabilistic multi-state decoder and the necessary training paradigms that enable point and click cursor control by a human with tetraplegia using an implanted microelectrode array. We present results from multiple recording sessions and quantify the point and click performance.

ps

pdf [BibTex]

pdf [BibTex]


An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots
An easy to use bluetooth scatternet protocol for fast data exchange in wireless sensor networks and autonomous robots

Mockel, R., Spröwitz, A., Maye, J., Ijspeert, A. J.

In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 2801-2806, IEEE, San Diego, CA, 2007 (inproceedings)

Abstract
We present a Bluetooth scatternet protocol (SNP) that provides the user with a serial link to all connected members in a transparent wireless Bluetooth network. By using only local decision making we can reduce the overhead of our scatternet protocol dramatically. We show how our SNP software layer simplifies a variety of tasks like the synchronization of central pattern generator controllers for actuators, collecting sensory data and building modular robot structures. The whole Bluetooth software stack including our new scatternet layer is implemented on a single Bluetooth and memory chip. To verify and characterize the SNP we provide data from experiments using real hardware instead of software simulation. This gives a realistic overview of the scatternet performance showing higher order effects that are difficult to be simulated correctly and guaranties the correct function of the SNP in real world applications.

dlg

DOI [BibTex]

DOI [BibTex]


Deterministic Annealing for Multiple-Instance Learning
Deterministic Annealing for Multiple-Instance Learning

Gehler, P., Chapelle, O.

In Artificial Intelligence and Statistics (AIStats), 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Point-and-click cursor control by a person with tetraplegia using an intracortical neural interface system

Kim, S., Simeral, J. D., Hochberg, L. R., Friehs, G., Donoghue, J. P., Black, M. J.

Program No. 517.2. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


Learning Appearances with Low-Rank SVM
Learning Appearances with Low-Rank SVM

Wolf, L., Jhuang, H., Hazan, T.

In Conference on Computer Vision and Pattern Recognition (CVPR), 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Neural correlates of grip aperture in primary motor cortex

Vargas-Irwin, C., Shakhnarovich, G., Artemiadis, P., Donoghue, J. P., Black, M. J.

Program No. 517.10. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


no image
Directional tuning in motor cortex of a person with ALS

Simeral, J. D., Donoghue, J. P., Black, M. J., Friehs, G. M., Brown, R. H., Krivickas, L. S., Hochberg, L. R.

Program No. 517.4. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


Steerable random fields
Steerable random fields

(Best Paper Award, INI-Graphics Net, 2008)

Roth, S., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Toward standardized assessment of pointing devices for brain-computer interfaces

Donoghue, J., Simeral, J., Kim, S., G.M. Friehs, L. H., Black, M.

Program No. 517.16. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


A Biologically Inspired System for Action Recognition
A Biologically Inspired System for Action Recognition

Jhuang, H., Serre, T., Wolf, L., Poggio, T.

In International Conference on Computer Vision (ICCV), 2007 (inproceedings)

ps

code pdf [BibTex]

code pdf [BibTex]


no image
Guided Self-organisation for Autonomous Robot Development

Martius, G., Herrmann, J. M., Der, R.

In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)

al

[BibTex]

[BibTex]


no image
AREADNE Research in Encoding And Decoding of Neural Ensembles

Shakhnarovich, G., Hochberg, L. R., Donoghue, J. P., Stein, J., Brown, R. H., Krivickas, L. S., Friehs, G. M., Black, M. J.

Program No. 517.8. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]