Header logo is


2017


Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets
Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., Lim, J.

In Proceedings from the conference "Neural Information Processing Systems 2017., (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., Advances in Neural Information Processing Systems 30 (NIPS), December 2017 (inproceedings)

am

pdf video [BibTex]

2017


pdf video [BibTex]


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Optimizing Long-term Predictions for Model-based Policy Search
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
A New Data Source for Inverse Dynamics Learning

Kappler, D., Meier, F., Ratliff, N., Schaal, S.

In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017 (inproceedings)

am

[BibTex]

[BibTex]


no image
Bayesian Regression for Artifact Correction in Electroencephalography

Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 131-136, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


no image
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces

Grossberger, L., Hohmann, M. R., Peters, J., Grosse-Wentrup, M.

Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 160-164, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)

am ei

DOI [BibTex]

DOI [BibTex]


On the relevance of grasp metrics for predicting grasp success
On the relevance of grasp metrics for predicting grasp success

Rubert, C., Kappler, D., Morales, A., Schaal, S., Bohg, J.

In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems, September 2017 (inproceedings) Accepted

Abstract
We aim to reliably predict whether a grasp on a known object is successful before it is executed in the real world. There is an entire suite of grasp metrics that has already been developed which rely on precisely known contact points between object and hand. However, it remains unclear whether and how they may be combined into a general purpose grasp stability predictor. In this paper, we analyze these questions by leveraging a large scale database of simulated grasps on a wide variety of objects. For each grasp, we compute the value of seven metrics. Each grasp is annotated by human subjects with ground truth stability labels. Given this data set, we train several classification methods to find out whether there is some underlying, non-trivial structure in the data that is difficult to model manually but can be learned. Quantitative and qualitative results show the complexity of the prediction problem. We found that a good prediction performance critically depends on using a combination of metrics as input features. Furthermore, non-parametric and non-linear classifiers best capture the structure in the data.

am

Project Page [BibTex]

Project Page [BibTex]


no image
Local Bayesian Optimization of Motor Skills

Akrour, R., Sorokin, D., Peters, J., Neumann, G.

Proceedings of the 34th International Conference on Machine Learning, 70, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)

am ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning

Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., Levine, S.

Proceedings of the 34th International Conference on Machine Learning, 70, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics

PDF arXiv DOI Project Page [BibTex]

PDF arXiv DOI Project Page [BibTex]


Learning Feedback Terms for Reactive Planning and Control
Learning Feedback Terms for Reactive Planning and Control

Rai, A., Sutanto, G., Schaal, S., Meier, F.

Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (conference)

am

pdf video [BibTex]

pdf video [BibTex]


Virtual vs. {R}eal: Trading Off Simulations and Physical Experiments in Reinforcement Learning with {B}ayesian Optimization
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders
Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders

Sproewitz, A., Göttler, C., Sinha, A., Caer, C., Öztekin, M. U., Petersen, K., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 64-70, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

dlg

Video link (url) DOI Project Page [BibTex]

Video link (url) DOI Project Page [BibTex]


Linking {Mechanics} and {Learning}
Linking Mechanics and Learning

Heim, S., Grimminger, F., Özge, D., Spröwitz, A.

In Proceedings of Dynamic Walking 2017, 2017 (inproceedings)

dlg

[BibTex]

[BibTex]


Is Growing Good for Learning?
Is Growing Good for Learning?

Heim, S., Spröwitz, A.

Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, 2017 (conference)

dlg

[BibTex]

[BibTex]


Evaluation of the passive dynamics of compliant legs with inertia
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2012


Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback
Towards Multi-DOF model mediated teleoperation: Using vision to augment feedback

Willaert, B., Bohg, J., Van Brussel, H., Niemeyer, G.

In IEEE International Workshop on Haptic Audio Visual Environments and Games (HAVE), pages: 25-31, October 2012 (inproceedings)

Abstract
In this paper, we address some of the challenges that arise as model-mediated teleoperation is applied to systems with multiple degrees of freedom and multiple sensors. Specifically we use a system with position, force, and vision sensors to explore an environment geometry in two degrees of freedom. The inclusion of vision is proposed to alleviate the difficulties of estimating an increasing number of environment properties. Vision can furthermore increase the predictive nature of model-mediated teleoperation, by effectively predicting touch feedback before the slave is even in contact with the environment. We focus on the case of estimating the location and orientation of a local surface patch at the contact point between the slave and the environment. We describe the various information sources with their respective limitations and create a combined model estimator as part of a multi-d.o.f. model-mediated controller. An experiment demonstrates the feasibility and benefits of utilizing vision sensors in teleoperation.

am

DOI [BibTex]

2012


DOI [BibTex]


Failure Recovery with Shared Autonomy
Failure Recovery with Shared Autonomy

Sankaran, B., Pitzer, B., Osentoski, S.

In International Conference on Intelligent Robots and Systems, October 2012 (inproceedings)

Abstract
Building robots capable of long term autonomy has been a long standing goal of robotics research. Such systems must be capable of performing certain tasks with a high degree of robustness and repeatability. In the context of personal robotics, these tasks could range anywhere from retrieving items from a refrigerator, loading a dishwasher, to setting up a dinner table. Given the complexity of tasks there are a multitude of failure scenarios that the robot can encounter, irrespective of whether the environment is static or dynamic. For a robot to be successful in such situations, it would need to know how to recover from failures or when to ask a human for help. This paper, presents a novel shared autonomy behavioral executive to addresses these issues. We demonstrate how this executive combines generalized logic based recovery and human intervention to achieve continuous failure free operation. We tested the systems over 250 trials of two different use case experiments. Our current algorithm drastically reduced human intervention from 26% to 4% on the first experiment and 46% to 9% on the second experiment. This system provides a new dimension to robot autonomy, where robots can exhibit long term failure free operation with minimal human supervision. We also discuss how the system can be generalized.

am

link (url) [BibTex]

link (url) [BibTex]


Task-Based Grasp Adaptation on a Humanoid Robot
Task-Based Grasp Adaptation on a Humanoid Robot

Bohg, J., Welke, K., León, B., Do, M., Song, D., Wohlkinger, W., Aldoma, A., Madry, M., Przybylski, M., Asfour, T., Marti, H., Kragic, D., Morales, A., Vincze, M.

In 10th IFAC Symposium on Robot Control, SyRoCo 2012, Dubrovnik, Croatia, September 5-7, 2012., pages: 779-786, September 2012 (inproceedings)

Abstract
In this paper, we present an approach towards autonomous grasping of objects according to their category and a given task. Recent advances in the field of object segmentation and categorization as well as task-based grasp inference have been leveraged by integrating them into one pipeline. This allows us to transfer task-specific grasp experience between objects of the same category. The effectiveness of the approach is demonstrated on the humanoid robot ARMAR-IIIa.

am

Video pdf DOI [BibTex]

Video pdf DOI [BibTex]


no image
Movement Segmentation and Recognition for Imitation Learning

Meier, F., Theodorou, E., Schaal, S.

In Seventeenth International Conference on Artificial Intelligence and Statistics, La Palma, Canary Islands, Fifteenth International Conference on Artificial Intelligence and Statistics , April 2012 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse dynamics with optimal distribution of contact forces for the control of legged robots

Righetti, L., Schaal, S.

In Dynamic Walking 2012, Pensacola, 2012 (inproceedings)

am

[BibTex]

[BibTex]


no image
Wasserstoffspeicherkapazität poröser Materialien in Kryoadsorptionstanks

Schlichtenmayer, M.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Encoding of Periodic and their Transient Motions by a Single Dynamic Movement Primitive

Ernesti, J., Righetti, L., Do, M., Asfour, T., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 57-64, IEEE, Osaka, Japan, November 2012 (inproceedings)

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Force Control Policies for Compliant Robotic Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In ICML’12 Proceedings of the 29th International Coference on International Conference on Machine Learning, pages: 49-50, Edinburgh, Scotland, 2012 (inproceedings)

am mg

[BibTex]

[BibTex]


no image
Behandlung stark nichtkollinearer Magnetisierungsstrukturen mit der Spin-Cluster-Entwicklung

Dietermann, F.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Spin wave mediated magnetic vortex core reversal

Stoll, H.

In 8461, San Diego, California, USA, 2012 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spinwelleninduziertes Schalten magnetischer Vortexkerne

Kammerer, M.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Quadratic programming for inverse dynamics with optimal distribution of contact forces

Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 538-543, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
In this contribution we propose an inverse dynamics controller for a humanoid robot that exploits torque redundancy to minimize any combination of linear and quadratic costs in the contact forces and the commands. In addition the controller satisfies linear equality and inequality constraints in the contact forces and the commands such as torque limits, unilateral contacts or friction cones limits. The originality of our approach resides in the formulation of the problem as a quadratic program where we only need to solve for the control commands and where the contact forces are optimized implicitly. Furthermore, we do not need a structured representation of the dynamics of the robot (i.e. an explicit computation of the inertia matrix). It is in contrast with existing methods based on quadratic programs. The controller is then robust to uncertainty in the estimation of the dynamics model and the optimization is fast enough to be implemented in high bandwidth torque control loops that are increasingly available on humanoid platforms. We demonstrate properties of our controller with simulations of a human size humanoid robot.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Die Stabilität des stromtragenden Zustands in MgB2 Schichten mit modifizierter Mikrostruktur

Treiber, S.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Hartmagnetische L10-FePt basierte gro\ssflächige Nanomuster mittels Nanoimprint-Lithografie

Bublat, T.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

mms

[BibTex]

[BibTex]

2010


no image
Reinforcement learning of full-body humanoid motor skills

Stulp, F., Buchli, J., Theodorou, E., Schaal, S.

In Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages: 405-410, December 2010, clmc (inproceedings)

Abstract
Applying reinforcement learning to humanoid robots is challenging because humanoids have a large number of degrees of freedom and state and action spaces are continuous. Thus, most reinforcement learning algorithms would become computationally infeasible and require a prohibitive amount of trials to explore such high-dimensional spaces. In this paper, we present a probabilistic reinforcement learning approach, which is derived from the framework of stochastic optimal control and path integrals. The algorithm, called Policy Improvement with Path Integrals (PI2), has a surprisingly simple form, has no open tuning parameters besides the exploration noise, is model-free, and performs numerically robustly in high dimensional learning problems. We demonstrate how PI2 is able to learn full-body motor skills on a 34-DOF humanoid robot. To demonstrate the generality of our approach, we also apply PI2 in the context of variable impedance control, where both planned trajectories and gain schedules for each joint are optimized simultaneously.

am

link (url) [BibTex]

2010


link (url) [BibTex]


no image
Relative Entropy Policy Search

Peters, J., Mülling, K., Altun, Y.

In Proceedings of the Twenty-Fourth National Conference on Artificial Intelligence, pages: 1607-1612, (Editors: Fox, M. , D. Poole), AAAI Press, Menlo Park, CA, USA, Twenty-Fourth National Conference on Artificial Intelligence (AAAI-10), July 2010 (inproceedings)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant policy gradients (Bagnell and Schneider 2003), many of these problems may be addressed by constraining the information loss. In this paper, we continue this path of reasoning and suggest the Relative Entropy Policy Search (REPS) method. The resulting method differs significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems.

am ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Reinforcement learning of motor skills in high dimensions: A path integral approach

Theodorou, E., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2397-2403, May 2010, clmc (inproceedings)

Abstract
Reinforcement learning (RL) is one of the most general approaches to learning control. Its applicability to complex motor systems, however, has been largely impossible so far due to the computational difficulties that reinforcement learning encounters in high dimensional continuous state-action spaces. In this paper, we derive a novel approach to RL for parameterized control policies based on the framework of stochastic optimal control with path integrals. While solidly grounded in optimal control theory and estimation theory, the update equations for learning are surprisingly simple and have no danger of numerical instabilities as neither matrix inversions nor gradient learning rates are required. Empirical evaluations demonstrate significant performance improvements over gradient-based policy learning and scalability to high-dimensional control problems. Finally, a learning experiment on a robot dog illustrates the functionality of our algorithm in a real-world scenario. We believe that our new algorithm, Policy Improvement with Path Integrals (PI2), offers currently one of the most efficient, numerically robust, and easy to implement algorithms for RL in robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Inverse dynamics control of floating base systems using orthogonal decomposition

Mistry, M., Buchli, J., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 3406-3412, May 2010, clmc (inproceedings)

Abstract
Model-based control methods can be used to enable fast, dexterous, and compliant motion of robots without sacrificing control accuracy. However, implementing such techniques on floating base robots, e.g., humanoids and legged systems, is non-trivial due to under-actuation, dynamically changing constraints from the environment, and potentially closed loop kinematics. In this paper, we show how to compute the analytically correct inverse dynamics torques for model-based control of sufficiently constrained floating base rigid-body systems, such as humanoid robots with one or two feet in contact with the environment. While our previous inverse dynamics approach relied on an estimation of contact forces to compute an approximate inverse dynamics solution, here we present an analytically correct solution by using an orthogonal decomposition to project the robot dynamics onto a reduced dimensional space, independent of contact forces. We demonstrate the feasibility and robustness of our approach on a simulated floating base bipedal humanoid robot and an actual robot dog locomoting over rough terrain.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Fast, robust quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages: 2665-2670, May 2010, clmc (inproceedings)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero-Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrain of varying difficulty levels. We demonstrate the generalization ability of this controller by presenting test results from an independent external test team on terrains that have never been shown to us.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Are reaching movements planned in kinematic or dynamic coordinates?

Ellmer, A., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2010), Naples, Florida, 2010, 2010, clmc (inproceedings)

Abstract
Whether human reaching movements are planned and optimized in kinematic (task space) or dynamic (joint or muscle space) coordinates is still an issue of debate. The first hypothesis implies that a planner produces a desired end-effector position at each point in time during the reaching movement, whereas the latter hypothesis includes the dynamics of the muscular-skeletal control system to produce a continuous end-effector trajectory. Previous work by Wolpert et al (1995) showed that when subjects were led to believe that their straight reaching paths corresponded to curved paths as shown on a computer screen, participants adapted the true path of their hand such that they would visually perceive a straight line in visual space, despite that they actually produced a curved path. These results were interpreted as supporting the stance that reaching trajectories are planned in kinematic coordinates. However, this experiment could only demonstrate that adaptation to altered paths, i.e. the position of the end-effector, did occur, but not that the precise timing of end-effector position was equally planned, i.e., the trajectory. Our current experiment aims at filling this gap by explicitly testing whether position over time, i.e. velocity, is a property of reaching movements that is planned in kinematic coordinates. In the current experiment, the velocity profiles of cursor movements corresponding to the participant's hand motions were skewed either to the left or to the right; the path itself was left unaltered. We developed an adaptation paradigm, where the skew of the velocity profile was introduced gradually and participants reported no awareness of any manipulation. Preliminary results indicate that the true hand motion of participants did not alter, i.e. there was no adaptation so as to counterbalance the introduced skew. However, for some participants, peak hand velocities were lowered for higher skews, which suggests that participants interpreted the manipulation as mere noise due to variance in their own movement. In summary, for a visuomotor transformation task, the hypothesis of a planned continuous end-effector trajectory predicts adaptation to a modified velocity profile. The current experiment found no systematic adaptation under such transformation, but did demonstrate an effect that is more in accordance that subjects could not perceive the manipulation and rather interpreted as an increase of noise.

am

[BibTex]

[BibTex]


no image
Absence of element specific ferromagnetism in Co doped ZnO investigated by soft X-ray resonant reflectivity

Goering, E., Brück, S., Tietze, T., Jakob, G., Gacic, M., Adrian, H.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Probing the local magnetization dynamics in large systems with spatial inhomogeneity

Li, J, Lee, M.-S., Amaladass, E., He, W., Eimüller, T.

In 200, Glasgow, Scotland, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Wetting of grain boundaries in Al by the solid Al3Mg2 phase

Straumal, B. B., Baretzky, B., Kogtenkova, O. A., Straumal, A. B., Sidorenko, A. S.

In 45, pages: 2057-2061, Athens, Greek, 2010 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]