Header logo is


2019


Thumb xl screenshot from 2019 03 21 12 11 19
Automated Generation of Reactive Programs from Human Demonstration for Orchestration of Robot Behaviors

Berenz, V., Bjelic, A., Mainprice, J.

ArXiv, 2019 (article)

Abstract
Social robots or collaborative robots that have to interact with people in a reactive way are difficult to program. This difficulty stems from the different skills required by the programmer: to provide an engaging user experience the behavior must include a sense of aesthetics while robustly operating in a continuously changing environment. The Playful framework allows composing such dynamic behaviors using a basic set of action and perception primitives. Within this framework, a behavior is encoded as a list of declarative statements corresponding to high-level sensory-motor couplings. To facilitate non-expert users to program such behaviors, we propose a Learning from Demonstration (LfD) technique that maps motion capture of humans directly to a Playful script. The approach proceeds by identifying the sensory-motor couplings that are active at each step using the Viterbi path in a Hidden Markov Model (HMM). Given these activation patterns, binary classifiers called evaluations are trained to associate activations to sensory data. Modularity is increased by clustering the sensory-motor couplings, leading to a hierarchical tree structure. The novelty of the proposed approach is that the learned behavior is encoded not in terms of trajectories in a task space, but as couplings between sensory information and high-level motor actions. This provides advantages in terms of behavioral generalization and reactivity displayed by the robot.

am

Support Video link (url) [BibTex]

2013


Thumb xl multi modal
3-D Object Reconstruction of Symmetric Objects by Fusing Visual and Tactile Sensing

Illonen, J., Bohg, J., Kyrki, V.

The International Journal of Robotics Research, 33(2):321-341, Sage, October 2013 (article)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated. A grasp is executed on the object with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the initial full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

Web DOI Project Page [BibTex]

2013


Web DOI Project Page [BibTex]


no image
Optimal control of reaching includes kinematic constraints

Mistry, M., Theodorou, E., Schaal, S., Kawato, M.

Journal of Neurophysiology, 2013, clmc (article)

Abstract
We investigate adaptation under a reaching task with an acceleration-based force field perturbation designed to alter the nominal straight hand trajectory in a potentially benign manner:pushing the hand of course in one direction before subsequently restoring towards the target. In this particular task, an explicit strategy to reduce motor effort requires a distinct deviation from the nominal rectilinear hand trajectory. Rather, our results display a clear directional preference during learning, as subjects adapted perturbed curved trajectories towards their initial baselines. We model this behavior using the framework of stochastic optimal control theory and an objective function that trades-of the discordant requirements of 1) target accuracy, 2) motor effort, and 3) desired trajectory. Our work addresses the underlying objective of a reaching movement, and we suggest that robustness, particularly against internal model uncertainly, is as essential to the reaching task as terminal accuracy and energy effciency.

am

PDF [BibTex]

PDF [BibTex]


no image
Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.

Neural Computation, (25):328-373, 2013, clmc (article)

Abstract
Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by meansof a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Optimal distribution of contact forces with inverse-dynamics control

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

The International Journal of Robotics Research, 32(3):280-298, March 2013 (article)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of the contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In this contribution we develop an inverse-dynamics controller for floating-base robots under contact constraints that can minimize any combination of linear and quadratic costs in the contact constraints and the commands. Our main result is the exact analytical derivation of the controller. Such a result is particularly relevant for legged robots as it allows us to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, we can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The main advantages of the controller are its simplicity, computational efficiency and robustness to model inaccuracies. We present detailed experimental results on simulated humanoid and quadruped robots as well as a real quadruped robot. The experiments demonstrate that the controller can greatly improve the robustness of locomotion of the robots.1

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2004


no image
Discovering optimal imitation strategies

Billard, A., Epars, Y., Calinon, S., Cheng, G., Schaal, S.

Robotics and Autonomous Systems, 47(2-3):68-77, 2004, clmc (article)

Abstract
This paper develops a general policy for learning relevant features of an imitation task. We restrict our study to imitation of manipulative tasks or of gestures. The imitation process is modeled as a hierarchical optimization system, which minimizes the discrepancy between two multi-dimensional datasets. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different imitative tasks and controls task reproduction by a full body humanoid robot.

am

[BibTex]

2004


[BibTex]


no image
Rhythmic movement is not discrete

Schaal, S., Sternad, D., Osu, R., Kawato, M.

Nature Neuroscience, 7(10):1137-1144, 2004, clmc (article)

Abstract
Rhythmic movements, like walking, chewing, or scratching, are phylogenetically old mo-tor behaviors found in many organisms, ranging from insects to primates. In contrast, discrete movements, like reaching, grasping, or kicking, are behaviors that have reached sophistication primarily in younger species, particularly in primates. Neurophysiological and computational research on arm motor control has focused almost exclusively on dis-crete movements, essentially assuming similar neural circuitry for rhythmic tasks. In con-trast, many behavioral studies focused on rhythmic models, subsuming discrete move-ment as a special case. Here, using a human functional neuroimaging experiment, we show that in addition to areas activated in rhythmic movement, discrete movement in-volves several higher cortical planning areas, despite both movement conditions were confined to the same single wrist joint. These results provide the first neuroscientific evi-dence that rhythmic arm movement cannot be part of a more general discrete movement system, and may require separate neurophysiological and theoretical treatment.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning from demonstration and adaptation of biped locomotion

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.

Robotics and Autonomous Systems, 47(2-3):79-91, 2004, clmc (article)

Abstract
In this paper, we introduce a framework for learning biped locomotion using dynamical movement primitives based on non-linear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG) of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithmbased on phase resetting and entrainment of coupled oscillators. Numerical simulations and experimental implementation on a physical robot demonstrate the effectiveness of the proposed locomotioncontroller.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Feedback error learning and nonlinear adaptive control

Nakanishi, J., Schaal, S.

Neural Networks, 17(10):1453-1465, 2004, clmc (article)

Abstract
In this paper, we present our theoretical investigations of the technique of feedback error learning (FEL) from the viewpoint of adaptive control. We first discuss the relationship between FEL and nonlinear adaptive control with adaptive feedback linearization, and show that FEL can be interpreted as a form of nonlinear adaptive control. Second, we present a Lyapunov analysis suggesting that the condition of strictly positive realness (SPR) associated with the tracking error dynamics is a sufficient condition for asymptotic stability of the closed-loop dynamics. Specifically, for a class of second order SISO systems, we show that this condition reduces to KD^2 > KP; where KP and KD are positive position and velocity feedback gains, respectively. Moreover, we provide a ÔpassivityÕ-based stability analysis which suggests that SPR of the tracking error dynamics is a necessary and sufficient condition for asymptotic hyperstability. Thus, the condition KD^2>KP mentioned above is not only a sufficient but also necessary condition to guarantee asymptotic hyperstability of FEL, i.e. the tracking error is bounded and asymptotically converges to zero. As a further point, we explore the adaptive control and FEL framework for feedforward control formulations, and derive an additional sufficient condition for asymptotic stability in the sense of Lyapunov. Finally, we present numerical simulations to illustrate the stability properties of FEL obtained from our mathematical analysis.

am

link (url) [BibTex]

link (url) [BibTex]

1997


no image
Locally weighted learning

Atkeson, C. G., Moore, A. W., Schaal, S.

Artificial Intelligence Review, 11(1-5):11-73, 1997, clmc (article)

Abstract
This paper surveys locally weighted learning, a form of lazy learning and memory-based learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning fit parameters, interference between old and new data, implementing locally weighted learning efficiently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control. Keywords: locally weighted regression, LOESS, LWR, lazy learning, memory-based learning, least commitment learning, distance functions, smoothing parameters, weighting functions, global tuning, local tuning, interference.

am

link (url) [BibTex]

1997


link (url) [BibTex]


no image
Locally weighted learning for control

Atkeson, C. G., Moore, A. W., Schaal, S.

Artificial Intelligence Review, 11(1-5):75-113, 1997, clmc (article)

Abstract
Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We explain various forms that control tasks can take, and how this affects the choice of learning paradigm. The discussion section explores the interesting impact that explicitly remembering all previous experiences has on the problem of learning to control. Keywords: locally weighted regression, LOESS, LWR, lazy learning, memory-based learning, least commitment learning, forward models, inverse models, linear quadratic regulation (LQR), shifting setpoint algorithm, dynamic programming.

am

link (url) [BibTex]

link (url) [BibTex]