Header logo is


2015


no image
Reducing Student Anonymity and Increasing Engagement

Kuchenbecker, K. J.

University of Pennsylvania Almanac, 62(18):8, November 2015 (article)

hi

[BibTex]

2015


[BibTex]


no image
Surgeons and Non-Surgeons Prefer Haptic Feedback of Instrument Vibrations During Robotic Surgery

Koehn, J. K., Kuchenbecker, K. J.

Surgical Endoscopy, 29(10):2970-2983, October 2015 (article)

hi

[BibTex]

[BibTex]


no image
Displaying Sensed Tactile Cues with a Fingertip Haptic Device

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 8(4):384-396, October 2015 (article)

hi

[BibTex]

[BibTex]


no image
A thin film active-lens with translational control for dynamically programmable optical zoom

Yun, S., Park, S., Park, B., Nam, S., Park, S. K., Kyung, K.

Applied Physics Letters, 107(8):081907, AIP Publishing, August 2015 (article)

Abstract
We demonstrate a thin film active-lens for rapidly and dynamically controllable optical zoom. The active-lens is composed of a convex hemispherical polydimethylsiloxane (PDMS) lens structure working as an aperture and a dielectric elastomer (DE) membrane actuator, which is a combination of a thin DE layer made with PDMS and a compliant electrode pattern using silver-nanowires. The active-lens is capable of dynamically changing focal point of the soft aperture as high as 18.4% through its translational movement in vertical direction responding to electrically induced bulged-up deformation of the DE membrane actuator. Under operation with various sinusoidal voltage signals, the movement responses are fairly consistent with those estimated from numerical simulation. The responses are not only fast, fairly reversible, and highly durable during continuous cyclic operations, but also large enough to impart dynamic focus tunability for optical zoom in microscopic imaging devices with a light-weight and ultra-slim configuration.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Toward a large-scale visuo-haptic dataset for robotic learning

Burka, A., Hu, S., Krishnan, S., Kuchenbecker, K. J., Hendricks, L. A., Gao, Y., Darrell, T.

In Proc. CVPR Workshop on the Future of Datasets in Vision, 2015 (inproceedings)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Detecting Lumps in Simulated Tissue via Palpation with a BioTac

Hui, J., Block, A., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, 2015, Work-in-progress paper. Poster presentation given by Hui (inproceedings)

hi

[BibTex]

[BibTex]


no image
Analysis of the Instrument Vibrations and Contact Forces Caused by an Expert Robotic Surgeon Doing FRS Tasks

Brown, J. D., O’Brien, C., Miyasaka, K., Dumon, K. R., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 75-76, London, England, June 2015, Poster presentation given by Brown (inproceedings)

hi

[BibTex]

[BibTex]


no image
Should Haptic Texture Vibrations Respond to User Force and Speed?

Culbertson, H., Kuchenbecker, K. J.

In IEEE World Haptics Conference, pages: 106 - 112, Evanston, Illinois, USA, June 2015, Oral presentation given by Culbertson (inproceedings)

hi

[BibTex]

[BibTex]


no image
Enabling the Baxter Robot to Play Hand-Clapping Games

Fitter, N. T., Neuburger, M., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, June 2015, Work-in-progress paper. Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Data-Driven Motion Mappings Improve Transparency in Teleoperation

Khurshid, R. P., Kuchenbecker, K. J.

Presence: Teleoperators and Virtual Environments, 24(2):132-154, May 2015 (article)

hi

[BibTex]

[BibTex]


no image
Using IMU Data to Teach a Robot Hand-Clapping Games

Fitter, N. T., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 353-355, April 2015, Work-in-progress paper. Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptic Feedback in Transoral Robotic Surgery: A Feasibility Study

Bur, A. M., Gomez, E. D., Rassekh, C. H., Newman, J. G., Weinstein, G. S., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society at COSM, April 2015, Poster presentation given by Bur (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptic Textures for Online Shopping

Culbertson, H., Kuchenbecker, K. J.

Interactive demonstrations in The Retail Collective exhibit, presented at the Dx3 Conference in Toronto, Canada, March 2015 (misc)

hi

[BibTex]

[BibTex]


no image
Design and Validation of a Practical Simulator for Transoral Robotic Surgery

Bur, A. M., Gomez, E. D., Chalian, A. A., Newman, J. G., Weinstein, G. S., Kuchenbecker, K. J.

In Proc. Society for Robotic Surgery Annual Meeting: Transoral Program, (T8), February 2015, Oral presentation given by Bur (inproceedings)

hi

[BibTex]

[BibTex]


no image
Robotic Learning of Haptic Adjectives Through Physical Interaction

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., Arrigo, M., Darrell, T., Kuchenbecker, K. J.

Robotics and Autonomous Systems, 63(3):279-292, 2015, Vivian Chu, Ian MacMahon, and Lorenzo Riano contributed equally to this publication. Corrigendum published in June 2016 (article)

hi

[BibTex]

[BibTex]


no image
Effects of Vibrotactile Feedback on Human Motor Learning of Arbitrary Arm Motions

Bark, K., Hyman, E., Tan, F., Cha, E., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(1):51-63, January 2015 (article)

hi

[BibTex]

[BibTex]


Exciting Engineered Passive Dynamics in a Bipedal Robot
Exciting Engineered Passive Dynamics in a Bipedal Robot

Renjewski, D., Spröwitz, A., Peekema, A., Jones, M., Hurst, J.

{IEEE Transactions on Robotics and Automation}, 31(5):1244-1251, IEEE, New York, NY, 2015 (article)

Abstract
A common approach in designing legged robots is to build fully actuated machines and control the machine dynamics entirely in soft- ware, carefully avoiding impacts and expending a lot of energy. However, these machines are outperformed by their human and animal counterparts. Animals achieve their impressive agility, efficiency, and robustness through a close integration of passive dynamics, implemented through mechanical components, and neural control. Robots can benefit from this same integrated approach, but a strong theoretical framework is required to design the passive dynamics of a machine and exploit them for control. For this framework, we use a bipedal spring–mass model, which has been shown to approximate the dynamics of human locomotion. This paper reports the first implementation of spring–mass walking on a bipedal robot. We present the use of template dynamics as a control objective exploiting the engineered passive spring–mass dynamics of the ATRIAS robot. The results highlight the benefits of combining passive dynamics with dynamics-based control and open up a library of spring–mass model-based control strategies for dynamic gait control of robots.

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Comparing the effect of different spine and leg designs for a small bounding quadruped robot
Comparing the effect of different spine and leg designs for a small bounding quadruped robot

Eckert, P., Spröwitz, A., Witte, H., Ijspeert, A. J.

In Proceedings of ICRA, pages: 3128-3133, Seattle, Washington, USA, 2015 (inproceedings)

Abstract
We present Lynx-robot, a quadruped, modular, compliant machine. It alternately features a directly actuated, single-joint spine design, or an actively supported, passive compliant, multi-joint spine configuration. Both spine con- figurations bend in the sagittal plane. This study aims at characterizing these two, largely different spine concepts, for a bounding gait of a robot with a three segmented, pantograph leg design. An earlier, similar-sized, bounding, quadruped robot named Bobcat with a two-segment leg design and a directly actuated, single-joint spine design serves as a comparison robot, to study and compare the effect of the leg design on speed, while keeping the spine design fixed. Both proposed spine designs (single rotatory and active and multi-joint compliant) reach moderate, self-stable speeds.

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]

2012


no image
Surgical Instrument Vibrations are a Construct-Valid Measure of Technical Skill in Robotic Peg Transfer and Suturing Tasks

Bark, K., Gomez, E. D., Rivera, C., McMahan, W., Remington, A., Murayama, K., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 50-51, London, England, July 2012, Oral presentation given by Bark (inproceedings)

hi

[BibTex]

2012


[BibTex]


no image
Evaluation of Tactile Feedback Methods for Wrist Rotation Guidance

Stanley, A. A., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 5(3):240-251, July 2012 (article)

hi

[BibTex]

[BibTex]


no image
Spectral Subtraction of Robot Motion Noise for Improved Vibrotactile Event Detection

McMahan, W., Kuchenbecker, K. J.

In Haptics: Perception, Devices, Mobility, and Communication: Proc. EuroHaptics, Part I, 7282, pages: 326-337, Lecture Notes in Computer Science, Springer, Tampere, Finland, June 2012, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Creating realistic virtual textures from contact acceleration data

Romano, J. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 5(2):109-119, April 2012, Cover article (article)

hi

[BibTex]

[BibTex]


no image
Simon Game with Data-driven Visuo-audio-haptic Buttons

Castillo, P., Romano, J. M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
Refined Methods for Creating Realistic Haptic Virtual Textures from Tool-Mediated Contact Acceleration Data

Culbertson, H., Romano, J. M., Castillo, P., Mintz, M., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 385-391, Vancouver, Canada, March 2012, Poster presentation given by Culbertson (inproceedings)

hi

[BibTex]

[BibTex]


no image
VerroTouch: Detection of Instrument Vibrations for Haptic Feedback and Skill Assessment in Robotic Surgery

Gomez, E. D., Bark, K., McMahan, W., Rivera, C., Remington, A., Lee, D. I., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), San Diego, California, USA, March 2012, Emerging Technology Poster presentation given by Gomez. Poster available at \href{http://thesagesmeeting.org/}{http://thesagesmeeting.org/} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptic Vibration Feedback for a Teleoperated Ground Vehicle

Healey, S. K., McMahan, W., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
A Biofidelic CPR Manikin With Programmable Pneumatic Damping

Stanley, A. A., Healey, S. K., Maltese, M. R., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, Finalist for Best Hands-on Demonstration Award (misc)

hi

[BibTex]

[BibTex]


no image
StrokeSleeve: Real-Time Vibrotactile Feedback for Motion Guidance

Bark, K., Cha, E., Tan, F., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
Pen Tablet Drawing Program with Haptic Textures

Castillo, P., Romano, J. M., Culbertson, H., Mintz, M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
Using Accelerometers to Localize Tactile Contact Events on a Robot Arm

McMahan, W., Romano, J. M., Kuchenbecker, K. J.

In Proc. Workshop on Advances in Tactile Sensing and Touch-Based Human-Robot Interaction, ACM/IEEE International Conference on Human-Robot Interaction, Boston, Massachusetts, March 2012, Oral presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Exploring Presentation Timing through Haptic Reminders

Tam, D., Kuchenbecker, K. J., MacLean, K., McGrenere, J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
HALO: Haptic Alerts for Low-hanging Obstacles in White Cane Navigation

Wang, Y., Koch, E., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, Finalist for Best Hands-on Demonstration Award (misc)

hi

[BibTex]

[BibTex]


no image
VerroTeach: Visuo-audio-haptic Training for Dental Caries Detection

Maggio, M. P., Parajon, R., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, {B}est Demonstration Award (three-way tie) (misc)

hi

[BibTex]

[BibTex]


no image
Recreating the feel of the human chest in a CPR manikin via programmable pneumatic damping

Stanley, A. A., Healey, S. K., Maltese, M. R., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 37-44, Vancouver, Canada, March 2012, Oral presentation given by Stanley (inproceedings)

hi

[BibTex]

[BibTex]


no image
HALO: Haptic Alerts for Low-hanging Obstacles in White Cane Navigation

Wang, Y., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 527-532, Vancouver, Canada, March 2012, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


Estimation of MIMO Closed-Loop Poles using Transfer Function Data
Estimation of MIMO Closed-Loop Poles using Transfer Function Data

Vardar, Y.

Eindhoven University of Technology, the Netherlands, 2012 (mastersthesis)

Abstract
For the development of high-tech systems such as lithographic positioning systems, throughput and accuracy are the main requirements. Nowadays, the trend to reach demanded accuracy and throughput levels is designing lightweight and consequently more flexible systems. To control these systems with a more effective and less conservative way, control design should go beyond the traditional rigid control and cope with the flexibilities that limit achievable bandwidth and performance. Therefore, conventional loop shaping methods are not sufficient to reach the performance criterions. Since obtaining an accurate parametric model is very complex and time-consuming for these high-tech systems, using well-developed model-based controller synthesis methods is also not a superior option. To achieve desired performance criterions, one solution can be implemented is reducing the gap between model-based and data-based control synthesis methods. In previous research, a method was developed to define the dynamic behavior of the system without a need for a parametric model. By this method transfer function data (TFD), which provides the information on the whole s-plane can be obtained from frequency response data (FRD) of the system. This innovation was a very important step to use data-based techniques for model-based controller synthesis methods. In this thesis firstly the standard technique to obtain TFD defined in [2] is extended. This standard technique to obtain TFD is not compatible with systems with pure integrators. To extend the methodology also for those systems, two techniques, which are altering the contour and filtering the system, are proposed. Then, the accuracy of TFD is investigated in detail. It is shown that the accuracy of TFD depends on the quality of FRD obtained and the computation techniques used to calculate TFD. Then, a technique which enables to determine the closed-loop poles of a MIMO system using TFD is discussed. The validity of the technique is proven with the help of complex function theory and calculus. Also, the factors that prevent determination of the closed-loop poles are discussed. In addition, it is observed that the accuracy of the closed-loop determination method depends on the quality of obtained TFD and the computation techniques. The proposed theory to obtain TFD and determination of closed-loop poles is validated with experiments conducted to a prototype lightweight system. Also, using experimental frequency response data of NXT-A7 test rig, the success of the proposed methodology is validated also for complex systems. Through these experimental results, it can be concluded that this new technique could be very advantageous in terms of ease of use and accuracy to determine the closed-loop poles of a MIMO lightly damped system.

hi

[BibTex]

[BibTex]


no image
VerroTeach: Visuo-audio-haptic Training for Dental Caries Detection

Maggio, M. P., Parajon, R., Kuchenbecker, K. J.

In Proc. Annual American Dental Educator’s Association (ADEA) Conference, Orlando, Florida, 2012, Oral presentation given by Maggio (inproceedings)

hi

[BibTex]

[BibTex]


Development of a Minimalistic Pneumatic Quadruped Robot for Fast Locomotion
Development of a Minimalistic Pneumatic Quadruped Robot for Fast Locomotion

Narioka, K., Rosendo, A., Spröwitz, A., Hosoda, K.

In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pages: 307-311, IEEE, Guangzhou, 2012 (inproceedings)

Abstract
In this paper, we describe the development of the quadruped robot ”Ken” with the minimalistic and lightweight body design for achieving fast locomotion. We use McKibben pneumatic artificial muscles as actuators, providing high frequency and wide stride motion of limbs, also avoiding problems with overheating. We conducted a preliminary experiment, finding out that the robot can swing its limb over 7.5 Hz without amplitude reduction, nor heat problems. Moreover, the robot realized a several steps of bouncing gait by using simple CPG-based open loop controller, indicating that the robot can generate enough torque to kick the ground and limb contraction to avoid stumbling.

dlg

DOI [BibTex]

DOI [BibTex]


Locomotion through Reconfiguration based on Motor Primitives for Roombots Self-Reconfigurable Modular Robots
Locomotion through Reconfiguration based on Motor Primitives for Roombots Self-Reconfigurable Modular Robots

Bonardi, S., Moeckel, R., Spröwitz, A., Vespignani, M., Ijspeert, A. J.

In Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on, pages: 1-6, 2012 (inproceedings)

Abstract
We present the hardware and reconfiguration experiments for an autonomous self-reconfigurable modular robot called Roombots (RB). RB were designed to form the basis for self-reconfigurable furniture. Each RB module contains three degrees of freedom that have been carefully selected to allow a single module to reach any position on a 2-dimensional grid and to overcome concave corners in a 3-dimensional grid. For the first time we demonstrate locomotion capabilities of single RB modules through reconfiguration with real hardware. The locomotion through reconfiguration is controlled by a planner combining the well-known D* algorithm and composed motor primitives. The novelty of our approach is the use of an online running hierarchical planner closely linked to the real hardware.

dlg

link (url) [BibTex]

link (url) [BibTex]


no image
A Data-Driven Method for Determining Natural Human-Robot Motion Mappings in Teleoperation

Pierce, R. M., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 169-176, Rome, Italy, 2012, Poster presentation given by Pierce (inproceedings)

hi

[BibTex]

[BibTex]


no image
Low Bitrate Source-filter Model Based Compression of Vibrotactile Texture Signals in Haptic Teleoperation

Chaudhari, R., Çizmeci, B., Kuchenbecker, K. J., Choi, S., Steinbach, E.

In Proc. ACM Multimedia, pages: 409-418, Nara, Japan, 2012, Oral presentation given by {Chaudhari} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Robotic Learning of Haptic Adjectives Through Physical Interaction

McMahon, I., Chu, V., Riano, L., McDonald, C. G., He, Q. (., Perez-Tejada, J. M., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., Kuchenbecker, K. J.

In Proc. IROS Workshop on Advances in Tactile Sensing and Touch-based Human-robot Interaction, Vilamoura, Algarve, Portugal, 2012, Oral presentation given by McMahon (inproceedings)

hi

[BibTex]

[BibTex]


no image
Construct Validity of Instrument Vibrations as a Measure of Robotic Surgical Skill

Gomez, E. D., Bark, K., Rivera, C., McMahan, W., Remington, A., Lee, D. I., Williams, N., Murayama, K., Dumon, K., Kuchenbecker, K. J.

Journal of the American College of Surgeons, 215(3):S119-120, Chicago, Illinois, USA, 2012, Oral presentation given by Gomez at the {\em American College of Surgeons (ACS) Clinical Congress} (article)

hi

[BibTex]

[BibTex]

2009


no image
Image-Enabled Force Feedback for Robotic Teleoperation of a Flexible Tool

Lindsey, Q., Tenenholtz, N., Lee, D. I., Kuchenbecker, K. J.

In Proc. IASTED International Conference on Robotics and Applications, pages: 224-233, Boston, Massachusetts, November 2009, Oral presentation given by Lindsey (inproceedings)

hi

[BibTex]

2009


[BibTex]


no image
GPU Methods for Real-Time Haptic Interaction with 3D Fluids

Yang, M., Lu, J., Safonova, A., Kuchenbecker, K. J.

In Proc. IEEE International Workshop on Haptic Audio-Visual Environments and Games, pages: 24-29, Lecco, Italy, November 2009, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
The AirWand: Design and Characterization of a Large-Workspace Haptic Device

Romano, J. M., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 1461-1466, Kobe, Japan, May 2009, Oral presentation given by \uline{Romano} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Stiffness Discrimination with Visual and Proprioceptive Cues

Gurari, N., Kuchenbecker, K. J., Okamura, A. M.

In Proc. IEEE World Haptics Conference, pages: 121-126, Salt Lake City, Utah, USA, March 2009, Poster presentation given by Gurari (inproceedings)

hi

[BibTex]

[BibTex]


no image
Displaying Realistic Contact Accelerations Via a Dedicated Vibration Actuator

McMahan, W., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Salt Lake City, Utah, Proc. IEEE World Haptics Conference, pp. 613–614, Salt Lake City, Utah, USA, March 2009, {B}est Demonstration Award (misc)

hi

[BibTex]

[BibTex]


no image
The iTorqU 1.0 and 2.0

Winfree, K. N., Gewirtz, J., Mather, T., Fiene, J., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Salt Lake City, Utah, March 2009 (misc)

hi

[BibTex]

[BibTex]


no image
Vibrotactile Feedback System for Intuitive Upper-Limb Rehabilitation

Kapur, P., Premakumar, S., Jax, S. A., Buxbaum, L. J., Dawson, A. M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Salt Lake City, Utah, USA, Proc. IEEE World Haptics Conference, pp. 621–622, March 2009 (misc)

hi

[BibTex]

[BibTex]