Header logo is


2017


Thumb xl fig1
Active colloidal propulsion over a crystalline surface

Choudhury, U., Straube, A., Fischer, P., Gibbs, J., Höfling, F.

New Journal of Physics, 19, pages: 125010, December 2017 (article)

Abstract
We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the mean-square displacement describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

pf

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


Thumb xl fig toyex lqr1kernel 1
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Thumb xl fig1
Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes

Qiu, T., Adams, F., Palagi, S., Melde, K., Mark, A. G., Wetterauer, U., Miernik, A., Fischer, P.

ACS Applied Materials & Interfaces, 9(49):42536 - 42543, November 2017 (article)

Abstract
Endoscopy enables minimally invasive procedures in many medical fields, such as urology. However, current endoscopes are normally cable-driven, which limits their dexterity and makes them hard to miniaturize. Indeed current urological endoscopes have an outer diameter of about 3 mm and still only possess one bending degree of freedom. In this paper, we report a novel wireless actuation mechanism that increases the dexterity and that permits the miniaturization of a urological endoscope. The novel actuator consists of thin active surfaces that can be readily attached to any device and are wirelessly powered by ultrasound. The surfaces consist of two-dimensional arrays of micro-bubbles, which oscillate under ultrasound excitation and thereby generate an acoustic streaming force. Bubbles of different sizes are addressed by their unique resonance frequency, thus multiple degrees of freedom can readily be incorporated. Two active miniaturized devices (with a side length of around 1 mm) are demonstrated: a miniaturized mechanical arm that realizes two degrees of freedom, and a flexible endoscope prototype equipped with a camera at the tip. With the flexible endoscope, an active endoscopic examination is successfully performed in a rabbit bladder. This results show the potential medical applicability of surface actuators wirelessly powered by ultrasound penetrating through biological tissues.

pf

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl probls sketch n3 0 ei0
Probabilistic Line Searches for Stochastic Optimization

Mahsereci, M., Hennig, P.

Journal of Machine Learning Research, 18(119):1-59, November 2017 (article)

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl admi201770108 gra 0001 m
Active Acoustic Surfaces Enable the Propulsion of a Wireless Robot

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Adams, F., Fischer, P.

Advanced Materials Interfaces, 4(21):1700933, September 2017 (article)

Abstract
A major challenge that prevents the miniaturization of mechanically actuated systems is the lack of suitable methods that permit the efficient transfer of power to small scales. Acoustic energy holds great potential, as it is wireless, penetrates deep into biological tissues, and the mechanical vibrations can be directly converted into directional forces. Recently, active acoustic surfaces are developed that consist of 2D arrays of microcavities holding microbubbles that can be excited with an external acoustic field. At resonance, the surfaces give rise to acoustic streaming and thus provide a highly directional propulsive force. Here, this study advances these wireless surface actuators by studying their force output as the size of the bubble-array is increased. In particular, a general method is reported to dramatically improve the propulsive force, demonstrating that the surface actuators are actually able to propel centimeter-scale devices. To prove the flexibility of the functional surfaces as wireless ready-to-attach actuator, a mobile mini-robot capable of propulsion in water along multiple directions is presented. This work paves the way toward effectively exploiting acoustic surfaces as a novel wireless actuation scheme at small scales.

pf

link (url) DOI Project Page [BibTex]


Thumb xl jeong et al 2017 advanced science
Corrosion-Protected Hybrid Nanoparticles

Jeong, H. H., Alarcon-Correa, M., Mark, A. G., Son, K., Lee, T., Fischer, P.

Advanced Science, 4(12):1700234, September 2017 (article)

Abstract
Nanoparticles composed of functional materials hold great promise for applications due to their unique electronic, optical, magnetic, and catalytic properties. However, a number of functional materials are not only difficult to fabricate at the nanoscale, but are also chemically unstable in solution. Hence, protecting nanoparticles from corrosion is a major challenge for those applications that require stability in aqueous solutions and biological fluids. Here, this study presents a generic scheme to grow hybrid 3D nanoparticles that are completely encapsulated by a nm thick protective shell. The method consists of vacuum-based growth and protection, and combines oblique physical vapor deposition with atomic layer deposition. It provides wide flexibility in the shape and composition of the nanoparticles, and the environments against which particles are protected. The work demonstrates the approach with multifunctional nanoparticles possessing ferromagnetic, plasmonic, and chiral properties. The present scheme allows nanocolloids, which immediately corrode without protection, to remain functional, at least for a week, in acidic solutions.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl teaser
Coupling Adaptive Batch Sizes with Learning Rates

Balles, L., Romero, J., Hennig, P.

In Proceedings Conference on Uncertainty in Artificial Intelligence (UAI) 2017, pages: 410-419, (Editors: Gal Elidan and Kristian Kersting), Association for Uncertainty in Artificial Intelligence (AUAI), Conference on Uncertainty in Artificial Intelligence (UAI), August 2017 (inproceedings)

Abstract
Mini-batch stochastic gradient descent and variants thereof have become standard for large-scale empirical risk minimization like the training of neural networks. These methods are usually used with a constant batch size chosen by simple empirical inspection. The batch size significantly influences the behavior of the stochastic optimization algorithm, though, since it determines the variance of the gradient estimates. This variance also changes over the optimization process; when using a constant batch size, stability and convergence is thus often enforced by means of a (manually tuned) decreasing learning rate schedule. We propose a practical method for dynamic batch size adaptation. It estimates the variance of the stochastic gradients and adapts the batch size to decrease the variance proportionally to the value of the objective function, removing the need for the aforementioned learning rate decrease. In contrast to recent related work, our algorithm couples the batch size to the learning rate, directly reflecting the known relationship between the two. On three image classification benchmarks, our batch size adaptation yields faster optimization convergence, while simultaneously simplifying learning rate tuning. A TensorFlow implementation is available.

ps pn

Code link (url) Project Page [BibTex]

Code link (url) Project Page [BibTex]


no image
Dynamic Time-of-Flight

Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei pn

DOI [BibTex]

DOI [BibTex]


Thumb xl fig1
Locomotion of light-driven soft microrobots through a hydrogel via local melting

Palagi, S., Mark, A. G., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2017 (inproceedings)

Abstract
Soft mobile microrobots whose deformation can be directly controlled by an external field can adapt to move in different environments. This is the case for the light-driven microrobots based on liquid-crystal elastomers (LCEs). Here we show that the soft microrobots can move through an agarose hydrogel by means of light-controlled travelling-wave motions. This is achieved by exploiting the inherent rise of the LCE temperature above the melting temperature of the agarose gel, which facilitates penetration of the microrobot through the hydrogel. The locomotion performance is investigated as a function of the travelling-wave parameters, showing that effective propulsion can be obtained by adapting the generated motion to the specific environmental conditions.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl comp 3e 00000 copy
Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures

Singh, D. P., Choudhury, U., Fischer, P., Mark, A. G.

Advanced Materials, 29, pages: 1701328, June 2017, 32 (article)

Abstract
The collective phenomena exhibited by artificial active matter systems present novel routes to fabricating out-of-equilibrium microscale assemblies. Here, the crystallization of passive silica colloids into well-controlled 2D assemblies is shown, which is directed by a small number of self-propelled active colloids. The active colloids are titania–silica Janus particles that are propelled when illuminated by UV light. The strength of the attractive interaction and thus the extent of the assembled clusters can be regulated by the light intensity. A remarkably small number of the active colloids is sufficient to induce the assembly of the dynamic crystals. The approach produces rationally designed colloidal clusters and crystals with controllable sizes, shapes, and symmetries. This multicomponent active matter system offers the possibility of obtaining structures and assemblies that cannot be found in equilibrium systems.

pf

link (url) DOI [BibTex]


Thumb xl kim et al 2017 advanced materials
Nanodiamonds That Swim

Kim, J. T., Choudhury, U., Hyeon-Ho, J., Fischer, P.

Advanced Materials, 29(30):1701024, June 2017, Back Cover (article)

Abstract
Nanodiamonds are emerging as nanoscale quantum probes for bio-sensing and imaging. This necessitates the development of new methods to accurately manipulate their position and orientation in aqueous solutions. The realization of an “active” nanodiamond (ND) swimmer in fluids, composed of a ND crystal containing nitrogen vacancy centers and a light-driven self-thermophoretic micromotor, is reported. The swimmer is propelled by a local temperature gradient created by laser illumination on its metal-coated side. Its locomotion—from translational to rotational motion—is successfully controlled by shape-dependent hydrodynamic interactions. The precise engineering of the swimmer's geometry is achieved by self-assembly combined with physical vapor shadow growth. The optical addressability of the suspended ND swimmers is demonstrated by observing the electron spin resonance in the presence of magnetic fields. Active motion at the nanoscale enables new sensing capabilities combined with active transport including, potentially, in living organisms.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl this one
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Thumb xl screen shot 2017 06 14 at 2.38.22 pm
Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders

Sproewitz, A., Göttler, C., Sinha, A., Caer, C., Öztekin, M. U., Petersen, K., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 64-70, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

dlg

Video link (url) DOI Project Page [BibTex]

Video link (url) DOI Project Page [BibTex]


Thumb xl toc image
Soft 3D-Printed Phantom of the Human Kidney with Collecting System

Adams, F., Qiu, T., Mark, A., Fritz, B., Kramer, L., Schlager, D., Wetterauer, U., Miernik, A., Fischer, P.

Ann. of Biomed. Eng., 45(4):963-972, April 2017 (article)

Abstract
Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.

pf

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl screen shot 2017 07 20 at 12.31.00 pm
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 54, pages: 528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (conference)

pn

pdf link (url) Project Page [BibTex]

pdf link (url) Project Page [BibTex]


Thumb xl fig1
Chapter 8 - Micro- and nanorobots in Newtonian and biological viscoelastic fluids

Palagi, S., (Walker) Schamel, D., Qiu, T., Fischer, P.

In Microbiorobotics, pages: 133 - 162, 8, Micro and Nano Technologies, Second edition, Elsevier, Boston, March 2017 (incollection)

Abstract
Swimming microorganisms are a source of inspiration for small scale robots that are intended to operate in fluidic environments including complex biomedical fluids. Nature has devised swimming strategies that are effective at small scales and at low Reynolds number. These include the rotary corkscrew motion that, for instance, propels a flagellated bacterial cell, as well as the asymmetric beat of appendages that sperm cells or ciliated protozoa use to move through fluids. These mechanisms can overcome the reciprocity that governs the hydrodynamics at small scale. The complex molecular structure of biologically important fluids presents an additional challenge for the effective propulsion of microrobots. In this chapter it is shown how physical and chemical approaches are essential in realizing engineered abiotic micro- and nanorobots that can move in biomedically important environments. Interestingly, we also describe a microswimmer that is effective in biological viscoelastic fluids that does not have a natural analogue.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl eururol2017
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]


Thumb xl toc image
Pattern formation and collective effects in populations of magnetic microswimmers

Vach, P. J., (Walker) Schamel, D., Fischer, P., Fratzl, P., Faivre, D.

J. of Phys. D: Appl. Phys., 50(11):11LT03, Febuary 2017 (article)

Abstract
Self-propelled particles are one prototype of synthetic active matter used to understand complex biological processes, such as the coordination of movement in bacterial colonies or schools of fishes. Collective patterns such as clusters were observed for such systems, reproducing features of biological organization. However, one limitation of this model is that the synthetic assemblies are made of identical individuals. Here we introduce an active system based on magnetic particles at colloidal scales. We use identical but also randomly-shaped magnetic micropropellers and show that they exhibit dynamic and reversible pattern formation.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2017 06 14 at 2.58.42 pm
Spinal joint compliance and actuation in a simulated bounding quadruped robot

Pouya, S., Khodabakhsh, M., Sproewitz, A., Ijspeert, A.

{Autonomous Robots}, pages: 437–452, Kluwer Academic Publishers, Springer, Dordrecht, New York, NY, Febuary 2017 (article)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl toc image
On-chip enzymatic microbiofuel cell-powered integrated circuits

Mark, A. G., Suraniti, E., Roche, J., Richter, H., Kuhn, A., Mano, N., Fischer, P.

Lab on a Chip, 17(10):1761-1768, Febuary 2017, Recent HOT Article (article)

Abstract
A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

Recent HOT Article.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Strong Rotational Anisotropies Affect Nonlinear Chiral Metamaterials

Hooper, D. C., Mark, A. G., Kuppe, C., Collins, J. T., Fischer, P., Valev, V. K.

Advanced Materials, 29(13):1605110, January 2017 (article)

Abstract
Masked by rotational anisotropies, the nonlinear chiroptical response of a metamaterial is initially completely inaccessible. Upon rotating the sample the chiral information emerges. These results highlight the need for a general method to extract the true chiral contributions to the nonlinear optical signal, which would be hugely valuable in the present context of increasingly complex chiral meta/nanomaterials.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl early stopping teaser
Early Stopping Without a Validation Set

Mahsereci, M., Balles, L., Lassner, C., Hennig, P.

arXiv preprint arXiv:1703.09580, 2017 (article)

Abstract
Early stopping is a widely used technique to prevent poor generalization performance when training an over-expressive model by means of gradient-based optimization. To find a good point to halt the optimizer, a common practice is to split the dataset into a training and a smaller validation set to obtain an ongoing estimate of the generalization performance. In this paper we propose a novel early stopping criterion which is based on fast-to-compute, local statistics of the computed gradients and entirely removes the need for a held-out validation set. Our experiments show that this is a viable approach in the setting of least-squares and logistic regression as well as neural networks.

ps pn

link (url) Project Page Project Page [BibTex]


no image
Krylov Subspace Recycling for Fast Iterative Least-Squares in Machine Learning

Roos, F. D., Hennig, P.

arXiv preprint arXiv:1706.00241, 2017 (article)

Abstract
Solving symmetric positive definite linear problems is a fundamental computational task in machine learning. The exact solution, famously, is cubicly expensive in the size of the matrix. To alleviate this problem, several linear-time approximations, such as spectral and inducing-point methods, have been suggested and are now in wide use. These are low-rank approximations that choose the low-rank space a priori and do not refine it over time. While this allows linear cost in the data-set size, it also causes a finite, uncorrected approximation error. Authors from numerical linear algebra have explored ways to iteratively refine such low-rank approximations, at a cost of a small number of matrix-vector multiplications. This idea is particularly interesting in the many situations in machine learning where one has to solve a sequence of related symmetric positive definite linear problems. From the machine learning perspective, such deflation methods can be interpreted as transfer learning of a low-rank approximation across a time-series of numerical tasks. We study the use of such methods for our field. Our empirical results show that, on regression and classification problems of intermediate size, this approach can interpolate between low computational cost and numerical precision.

pn

link (url) Project Page [BibTex]


no image
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings

Kanagawa, M., Sriperumbudur, B. K., Fukumizu, K.

Arxiv e-prints, arXiv:1709.00147v1 [math.NA], 2017 (article)

Abstract
This paper presents convergence analysis of kernel-based quadrature rules in misspecified settings, focusing on deterministic quadrature in Sobolev spaces. In particular, we deal with misspecified settings where a test integrand is less smooth than a Sobolev RKHS based on which a quadrature rule is constructed. We provide convergence guarantees based on two different assumptions on a quadrature rule: one on quadrature weights, and the other on design points. More precisely, we show that convergence rates can be derived (i) if the sum of absolute weights remains constant (or does not increase quickly), or (ii) if the minimum distance between distance design points does not decrease very quickly. As a consequence of the latter result, we derive a rate of convergence for Bayesian quadrature in misspecified settings. We reveal a condition on design points to make Bayesian quadrature robust to misspecification, and show that, under this condition, it may adaptively achieve the optimal rate of convergence in the Sobolev space of a lesser order (i.e., of the unknown smoothness of a test integrand), under a slightly stronger regularity condition on the integrand.

pn

arXiv [BibTex]

arXiv [BibTex]


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screen shot 2018 02 08 at 12.58.55 pm
Linking Mechanics and Learning

Heim, S., Grimminger, F., Özge, D., Spröwitz, A.

In Proceedings of Dynamic Walking 2017, 2017 (inproceedings)

dlg

[BibTex]

[BibTex]


no image
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)

Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.

Dagstuhl Reports, 6(11):142-167, 2017 (book)

ei pn

DOI [BibTex]

DOI [BibTex]


Thumb xl screen shot 2018 02 08 at 12.58.55 pm
Is Growing Good for Learning?

Heim, S., Spröwitz, A.

Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, 2017 (conference)

dlg

[BibTex]

[BibTex]


no image
Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy

Wahl, N., Hennig, P., Wieser, H. P., Bangert, M.

Physics in Medicine & Biology, 62(14):5790-5807, 2017 (article)

Abstract
The sensitivity of intensity-modulated proton therapy (IMPT) treatment plans to uncertainties can be quantified and mitigated with robust/min-max and stochastic/probabilistic treatment analysis and optimization techniques. Those methods usually rely on sparse random, importance, or worst-case sampling. Inevitably, this imposes a trade-off between computational speed and accuracy of the uncertainty propagation. Here, we investigate analytical probabilistic modeling (APM) as an alternative for uncertainty propagation and minimization in IMPT that does not rely on scenario sampling. APM propagates probability distributions over range and setup uncertainties via a Gaussian pencil-beam approximation into moments of the probability distributions over the resulting dose in closed form. It supports arbitrary correlation models and allows for efficient incorporation of fractionation effects regarding random and systematic errors. We evaluate the trade-off between run-time and accuracy of APM uncertainty computations on three patient datasets. Results are compared against reference computations facilitating importance and random sampling. Two approximation techniques to accelerate uncertainty propagation and minimization based on probabilistic treatment plan optimization are presented. Runtimes are measured on CPU and GPU platforms, dosimetric accuracy is quantified in comparison to a sampling-based benchmark (5000 random samples). APM accurately propagates range and setup uncertainties into dose uncertainties at competitive run-times (GPU ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn001.gif] {$\leqslant {5}$} min). The resulting standard deviation (expectation value) of dose show average global ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn002.gif] {$\gamma_{{3}\% / {3}~{\rm mm}}$} pass rates between 94.2% and 99.9% (98.4% and 100.0%). All investigated importance sampling strategies provided less accuracy at higher run-times considering only a single fraction. Considering fractionation, APM uncertainty propagation and treatment plan optimization was proven to be possible at constant time complexity, while run-times of sampling-based computations are linear in the number of fractions. Using sum sampling within APM, uncertainty propagation can only be accelerated at the cost of reduced accuracy in variance calculations. For probabilistic plan optimization, we were able to approximate the necessary pre-computations within seconds, yielding treatment plans of similar quality as gained from exact uncertainty propagation. APM is suited to enhance the trade-off between speed and accuracy in uncertainty propagation and probabilistic treatment plan optimization, especially in the context of fractionation. This brings fully-fledged APM computations within reach of clinical application.

pn

link (url) [BibTex]

link (url) [BibTex]


no image
Analytical probabilistic modeling of RBE-weighted dose for ion therapy

Wieser, H., Hennig, P., Wahl, N., Bangert, M.

Physics in Medicine and Biology (PMB), 62(23):8959-8982, 2017 (article)

pn

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2018 02 08 at 1.12.35 pm
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]

2016


Thumb xl toc image
Wireless actuation with functional acoustic surfaces

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Adams, F., Fischer, P.

Appl. Phys. Lett., 109(19):191602, November 2016, APL Editor's pick. APL News. (article)

Abstract
Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant microcavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of similar to 0.45mN is measured on a 4 x 4 mm(2) functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 x 2.6 x 5 mm(3) in size and generates a stall torque of similar to 0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

pf

link (url) DOI Project Page [BibTex]

2016


link (url) DOI Project Page [BibTex]


Thumb xl toc image
Nanomotors

Alarcon-Correa, M., Walker (Schamel), D., Qiu, T., Fischer, P.

Eur. Phys. J.-Special Topics, 225(11-12):2241-2254, November 2016 (article)

Abstract
This minireview discusses whether catalytically active macromolecules and abiotic nanocolloids, that are smaller than motile bacteria, can self-propel. Kinematic reversibility at low Reynolds number demands that self-propelling colloids must break symmetry. Methods that permit the synthesis and fabrication of Janus nanocolloids are therefore briefly surveyed, as well as means that permit the analysis of the nanocolloids' motion. Finally, recent work is reviewed which shows that nanoagents are small enough to penetrate the complex inhomogeneous polymeric network of biological fluids and gels, which exhibit diverse rheological behaviors.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots

Palagi, S., Mark, A. G., Reigh, S. Y., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Sanchez-Castillo, A., Kapernaum, N., Giesselmann, F., Wiersma, D. S., Lauga, E., Fischer, P.

Nature Materials, 15(6):647–653, November 2016, Max Planck press release, Nature News & Views. (article)

Abstract
Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

pf

Video - Soft photo Micro-Swimmer DOI [BibTex]

Video - Soft photo Micro-Swimmer DOI [BibTex]


Thumb xl toc image
Capture of 2D Microparticle Arrays via a UV-Triggered Thiol-yne “Click” Reaction

Walker (Schamel), D., Singh, D. P., Fischer, P.

Advanced Materials, 28(44):9846-9850, September 2016 (article)

Abstract
Immobilization of colloidal assemblies onto solid supports via a fast UV-triggered click-reaction is achieved. Transient assemblies of microparticles and colloidal materials can be captured and transferred to solid supports. The technique does not require complex reaction conditions, and is compatible with a variety of particle assembly methods.

pf

DOI [BibTex]


Thumb xl toc image
Magnesium plasmonics for UV applications and chiral sensing

Jeong, H. H., Mark, A. G., Fischer, P.

Chem. Comm., 52(82):12179-12182, September 2016 (article)

Abstract
We demonstrate that chiral magnesium nanoparticles show remarkable plasmonic extinction- and chiroptical-effects in the ultraviolet region. The Mg nanohelices possess an enhanced local surface plasmon resonance (LSPR) sensitivity due to the strong dispersion of most substances in the UV region.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl cover nature 1j 00008
Holograms for acoustics

Melde, K., Mark, A. G., Qiu, T., Fischer, P.

Nature, 537, pages: 518-522, September 2016, Max Planck press release, Nature News & Views, Nature Video. (article)

Abstract
Holographic techniques are fundamental to applications such as volumetric displays(1), high-density data storage and optical tweezers that require spatial control of intricate optical(2) or acoustic fields(3,4) within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront(5,6) in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography(7) skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources(3,4,8-12); however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

pf

Video - Holograms for Sound DOI Project Page [BibTex]

Video - Holograms for Sound DOI Project Page [BibTex]


Thumb xl toc image
A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)

Garbacz, P., Fischer, P., Kraemer, S.

J. Chem. Phys., 145(10):104201, September 2016 (article)

Abstract
Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the F-19 NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal. Published by AIP Publishing.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl fig1
Soft continuous microrobots with multiple intrinsic degrees of freedom

Palagi, S., Mark, A. G., Melde, K., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
One of the main challenges in the development of microrobots, i.e. robots at the sub-millimeter scale, is the difficulty of adopting traditional solutions for power, control and, especially, actuation. As a result, most current microrobots are directly manipulated by external fields, and possess only a few passive degrees of freedom (DOFs). We have reported a strategy that enables embodiment, remote powering and control of a large number of DOFs in mobile soft microrobots. These consist of photo-responsive materials, such that the actuation of their soft continuous body can be selectively and dynamically controlled by structured light fields. Here we use finite-element modelling to evaluate the effective number of DOFs that are addressable in our microrobots. We also demonstrate that by this flexible approach different actuation patterns can be obtained, and thus different locomotion performances can be achieved within the very same microrobot. The reported results confirm the versatility of the proposed approach, which allows for easy application-specific optimization and online reconfiguration of the microrobot's behavior. Such versatility will enable advanced applications of robotics and automation at the micro scale.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Active Nanorheology with Plasmonics

Jeong, H. H., Mark, A. G., Lee, T., Alarcon-Correa, M., Eslami, S., Qiu, T., Gibbs, J. G., Fischer, P.

Nano Letters, 16(8):4887-4894, July 2016 (article)

Abstract
Nanoplasmonic systems are valued for their strong optical response and their small size. Most plasmonic sensors and systems to date have been rigid and passive. However, rendering these structures dynamic opens new possibilities for applications. Here we demonstrate that dynamic plasmonic nanoparticles can be used as mechanical sensors to selectively probe the rheological properties of a fluid in situ at the nanoscale and in microscopic volumes. We fabricate chiral magneto-plasmonic nanocolloids that can be actuated by an external magnetic field, which in turn allows for the direct and fast modulation of their distinct optical response. The method is robust and allows nanorheological measurements with a mechanical sensitivity of similar to 0.1 cP, even in strongly absorbing fluids with an optical density of up to OD similar to 3 (similar to 0.1% light transmittance) and in the presence of scatterers (e.g., 50% v/v red blood cells).

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl marss2016
Wireless actuator based on ultrasonic bubble streaming

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
Miniaturized actuators are a key element for the manipulation and automation at small scales. Here, we propose a new miniaturized actuator, which consists of an array of micro gas bubbles immersed in a fluid. Under ultrasonic excitation, the oscillation of micro gas bubbles results in acoustic streaming and provides a propulsive force that drives the actuator. The actuator was fabricated by lithography and fluidic streaming was observed under ultrasound excitation. Theoretical modelling and numerical simulations were carried out to show that lowing the surface tension results in a larger amplitude of the bubble oscillation, and thus leads to a higher propulsive force. Experimental results also demonstrate that the propulsive force increases 3.5 times when the surface tension is lowered by adding a surfactant. An actuator with a 4×4 mm 2 surface area provides a driving force of about 0.46 mN, suggesting that it is possible to be used as a wireless actuator for small-scale robots and medical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screen shot 2018 10 09 at 11.42.49
Active Uncertainty Calibration in Bayesian ODE Solvers

Kersting, H., Hennig, P.

Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)

Abstract
There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al.~introduced a sampling-based class of methods that are `well-calibrated' in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al.~pointed out a precise connection between classic Runge-Kutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the trade-off between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


Thumb xl screen shot 2016 01 19 at 14.48.37
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video PDF DOI Project Page [BibTex]

Video PDF DOI Project Page [BibTex]


no image
Batch Bayesian Optimization via Local Penalization

González, J., Dai, Z., Hennig, P., Lawrence, N.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)

ei pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl toc imag
Auxetic Metamaterial Simplifies Soft Robot Design

Mark, A. G., Palagi, S., Qiu, T., Fischer, P.

In 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4951-4956, May 2016 (inproceedings)

Abstract
Soft materials are being adopted in robotics in order to facilitate biomedical applications and in order to achieve simpler and more capable robots. One route to simplification is to design the robot's body using `smart materials' that carry the burden of control and actuation. Metamaterials enable just such rational design of the material properties. Here we present a soft robot that exploits mechanical metamaterials for the intrinsic synchronization of two passive clutches which contact its travel surface. Doing so allows it to move through an enclosed passage with an inchworm motion propelled by a single actuator. Our soft robot consists of two 3D-printed metamaterials that implement auxetic and normal elastic properties. The design, fabrication and characterization of the metamaterials are described. In addition, a working soft robot is presented. Since the synchronization mechanism is a feature of the robot's material body, we believe that the proposed design will enable compliant and robust implementations that scale well with miniaturization.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl untitled
Probabilistic Approximate Least-Squares

Bartels, S., Hennig, P.

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)

Abstract
Least-squares and kernel-ridge / Gaussian process regression are among the foundational algorithms of statistics and machine learning. Famously, the worst-case cost of exact nonparametric regression grows cubically with the data-set size; but a growing number of approximations have been developed that estimate good solutions at lower cost. These algorithms typically return point estimators, without measures of uncertainty. Leveraging recent results casting elementary linear algebra operations as probabilistic inference, we propose a new approximate method for nonparametric least-squares that affords a probabilistic uncertainty estimate over the error between the approximate and exact least-squares solution (this is not the same as the posterior variance of the associated Gaussian process regressor). This allows estimating the error of the least-squares solution on a subset of the data relative to the full-data solution. The uncertainty can be used to control the computational effort invested in the approximation. Our algorithm has linear cost in the data-set size, and a simple formal form, so that it can be implemented with a few lines of code in programming languages with linear algebra functionality.

ei pn

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


Thumb xl spie2016
Towards Photo-Induced Swimming: Actuation of Liquid Crystalline Elastomer in Water

cerretti, G., Martella, D., Zeng, H., Parmeggiani, C., Palagi, S., Mark, A. G., Melde, K., Qiu, T., Fischer, P., Wiersma, D.

In Proc. of SPIE 9738, pages: Laser 3D Manufacturing III, 97380T, April 2016 (inproceedings)

Abstract
Liquid Crystalline Elastomers (LCEs) are very promising smart materials that can be made sensitive to different external stimuli, such as heat, pH, humidity and light, by changing their chemical composition. In this paper we report the implementation of a nematically aligned LCE actuator able to undergo large light-induced deformations. We prove that this property is still present even when the actuator is submerged in fresh water. Thanks to the presence of azo-dye moieties, capable of going through a reversible trans-cis photo-isomerization, and by applying light with two different wavelengths we managed to control the bending of such actuator in the liquid environment. The reported results represent the first step towards swimming microdevices powered by light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]