Header logo is


2001


no image
Regularized principal manifolds

Smola, A., Mika, S., Schölkopf, B., Williamson, R.

Journal of Machine Learning Research, 1, pages: 179-209, June 2001 (article)

Abstract
Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for finding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach.

ei

PDF [BibTex]

2001


PDF [BibTex]


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

ei

PDF [BibTex]

PDF [BibTex]


no image
Unsupervised Segmentation and Classification of Mixtures of Markovian Sources

Seldin, Y., Bejerano, G., Tishby, N.

In The 33rd Symposium on the Interface of Computing Science and Statistics (Interface 2001 - Frontiers in Data Mining and Bioinformatics), pages: 1-15, 33rd Symposium on the Interface of Computing Science and Statistics (Interface - Frontiers in Data Mining and Bioinformatics), 2001 (inproceedings)

Abstract
We describe a novel algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources, first presented in [SBT01]. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees [RST96] using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families (results of the [BSMT01] work), we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to signatures of important functional sub-units called domains. Our approach to proteins classification (through the obtained signatures) is shown to have both conceptual and practical advantages over the currently used methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Unsupervised Sequence Segmentation by a Mixture of Switching Variable Memory Markov Sources

Seldin, Y., Bejerano, G., Tishby, N.

In In the proceeding of the 18th International Conference on Machine Learning (ICML 2001), pages: 513-520, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Abstract
We present a novel information theoretic algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees (Ron et al., 1996) using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The algorithm seems to be self regulated and automatically avoids over segmentation. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families, we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to important functional sub-units called domains.

ei

PDF [BibTex]

PDF [BibTex]


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

ei

Web [BibTex]

Web [BibTex]


Thumb xl toc image
Isotropic second-order nonlinear optical susceptibilities

Fischer, P., Buckingham, A., Albrecht, A.

PHYSICAL REVIEW A, 64(5), 2001 (article)

Abstract
The second-order nonlinear optical susceptibility, in the electric dipole approximation, is only nonvanishing for materials that are noncentrosymmetric. Should the medium be isotropic, then only a chiral system. such as an optically active liquid, satisfies this symmetry requirement. We derive the quantum-mechanical form of the isotropic component of the sum- and difference-frequency susceptibility and discuss its unusual spectral properties. We show that any coherent second-order nonlinear optical process in a system of randomly oriented molecules requires the medium to be chiral. and the incident frequencies to be different and nonzero. Furthermore, a minimum of two nondegenerate excited molecular states are needed for the isotropic part of the susceptibility to be nonvanishing. The rotationally invariant susceptibility is zero in the static field limit and shows exceptionally sensitive resonance and dephasing effects that are particular to chiral centers.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Reply to “Comment on ‘Phenomenological damping in optical response tensors’”

Buckingham, A., Fischer, P.

PHYSICAL REVIEW A, 63(4), 2001 (article)

Abstract
We show that damping factors must not be incorporated in the perturbation of the ground state by a static electric field. If they are included, as in the theory of Stedman et al. {[}preceding Comment. Phys. Rev. A 63, 047801 (2001)], then there would be an electric dipole in the y direction induced in a hydrogen atom in the M-s = + 1/2 state by a static electric field in the x direction. Such a dipole is excluded by symmetry.

pf

DOI [BibTex]