Header logo is


2020


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 895-905, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

arXiv link (url) [BibTex]

2020


arXiv link (url) [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 820-830, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Bayesian Online Prediction of Change Points

Agudelo-España, D., Gomez-Gonzalez, S., Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 320-329, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI) , 124, pages: 1-10, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Conditional Moment Test via Maximum Moment Restriction

Muandet, K., Jitkrittum, W., Kübler, J. M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
On the design of consequential ranking algorithms

Tabibian, B., Gómez, V., De, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 171-180, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Importance Sampling via Local Sensitivity

Raj, A., Musco, C., Mackey, L.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 3099-3109, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 1297-1307, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 277-287, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei plg

link (url) [BibTex]

link (url) [BibTex]


no image
Integrals over Gaussians under Linear Domain Constraints

Gessner, A., Kanjilal, O., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 2764-2774, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


STAR: Sparse Trained Articulated Human Body Regressor
STAR: Sparse Trained Articulated Human Body Regressor

Osman, A. A. A., Bolkart, T., Black, M. J.

In European Conference on Computer Vision (ECCV) , August 2020 (inproceedings)

Abstract
The SMPL body model is widely used for the estimation, synthesis, and analysis of 3D human pose and shape. While popular, we show that SMPL has several limitations and introduce STAR, which is quantitatively and qualitatively superior to SMPL. First, SMPL has a huge number of parameters resulting from its use of global blend shapes. These dense pose-corrective offsets relate every vertex on the mesh to all the joints in the kinematic tree, capturing spurious long-range correlations. To address this, we define per-joint pose correctives and learn the subset of mesh vertices that are influenced by each joint movement. This sparse formulation results in more realistic deformations and significantly reduces the number of model parameters to 20% of SMPL. When trained on the same data as SMPL, STAR generalizes better despite having many fewer parameters. Second, SMPL factors pose-dependent deformations from body shape while, in reality, people with different shapes deform differently. Consequently, we learn shape-dependent pose-corrective blend shapes that depend on both body pose and BMI. Third, we show that the shape space of SMPL is not rich enough to capture the variation in the human population. We address this by training STAR with an additional 10,000 scans of male and female subjects, and show that this results in better model generalization. STAR is compact, generalizes better to new bodies and is a drop-in replacement for SMPL. STAR is publicly available for research purposes at http://star.is.tue.mpg.de.

ps

Project Page Code Video paper supplemental [BibTex]


Monocular Expressive Body Regression through Body-Driven Attention
Monocular Expressive Body Regression through Body-Driven Attention

Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black, M. J.

In Computer Vision – ECCV 2020, Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
To understand how people look, interact, or perform tasks,we need to quickly and accurately capture their 3D body, face, and hands together from an RGB image. Most existing methods focus only on parts of the body. A few recent approaches reconstruct full expressive 3D humans from images using 3D body models that include the face and hands. These methods are optimization-based and thus slow, prone to local optima, and require 2D keypoints as input. We address these limitations by introducing ExPose (EXpressive POse and Shape rEgression), which directly regresses the body, face, and hands, in SMPL-X format, from an RGB image. This is a hard problem due to the high dimensionality of the body and the lack of expressive training data. Additionally, hands and faces are much smaller than the body, occupying very few image pixels. This makes hand and face estimation hard when body images are downscaled for neural networks. We make three main contributions. First, we account for the lack of training data by curating a dataset of SMPL-X fits on in-the-wild images. Second, we observe that body estimation localizes the face and hands reasonably well. We introduce body-driven attention for face and hand regions in the original image to extract higher-resolution crops that are fed to dedicated refinement modules. Third, these modules exploit part-specific knowledge from existing face and hand-only datasets. ExPose estimates expressive 3D humans more accurately than existing optimization methods at a small fraction of the computational cost. Our data, model and code are available for research at https://expose.is.tue.mpg.de.

ps

code Short video Long video arxiv pdf suppl link (url) Project Page [BibTex]


no image
Modular Block-diagonal Curvature Approximations for Feedforward Architectures

Dangel, F., Harmeling, S., Hennig, P.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 799-808, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


GRAB: A Dataset of Whole-Body Human Grasping of Objects
GRAB: A Dataset of Whole-Body Human Grasping of Objects

Taheri, O., Ghorbani, N., Black, M. J., Tzionas, D.

In Computer Vision – ECCV 2020, Springer International Publishing, Cham, August 2020 (inproceedings)

Abstract
Training computers to understand, model, and synthesize human grasping requires a rich dataset containing complex 3D object shapes, detailed contact information, hand pose and shape, and the 3D body motion over time. While "grasping" is commonly thought of as a single hand stably lifting an object, we capture the motion of the entire body and adopt the generalized notion of "whole-body grasps". Thus, we collect a new dataset, called GRAB (GRasping Actions with Bodies), of whole-body grasps, containing full 3D shape and pose sequences of 10 subjects interacting with 51 everyday objects of varying shape and size. Given MoCap markers, we fit the full 3D body shape and pose, including the articulated face and hands, as well as the 3D object pose. This gives detailed 3D meshes over time, from which we compute contact between the body and object. This is a unique dataset, that goes well beyond existing ones for modeling and understanding how humans grasp and manipulate objects, how their full body is involved, and how interaction varies with the task. We illustrate the practical value of GRAB with an example application; we train GrabNet, a conditional generative network, to predict 3D hand grasps for unseen 3D object shapes. The dataset and code are available for research purposes at https://grab.is.tue.mpg.de.

ps

pdf suppl video (long) video (short) link (url) DOI [BibTex]

pdf suppl video (long) video (short) link (url) DOI [BibTex]


no image
Testing Goodness of Fit of Conditional Density Models with Kernels

Jitkrittum, W., Kanagawa, H., Schölkopf, B.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), 124, pages: 221-230, Proceedings of Machine Learning Research, (Editors: Jonas Peters and David Sontag), PMLR, August 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Algorithmic Recourse: from Counterfactual Explanations to Interventions

Karimi, A., Schölkopf, B., Valera, I.

37th International Conference on Machine Learning (ICML), July 2020 (conference) Submitted

ei plg

[BibTex]

[BibTex]


no image
Variational Bayes in Private Settings (VIPS) (Extended Abstract)

Foulds, J. R., Park, M., Chaudhuri, K., Welling, M.

Proceedings of the 29th International Joint Conference on Artificial Intelligence, (IJCAI-PRICAI), pages: 5050-5054, (Editors: Christian Bessiere), International Joint Conferences on Artificial Intelligence Organization, July 2020, Journal track (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Learning to Dress 3D People in Generative Clothing
Learning to Dress 3D People in Generative Clothing

Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), pages: 6468-6477, IEEE, June 2020 (inproceedings)

Abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses.

ps

Project page Code Short video Long video arXiv DOI [BibTex]

Project page Code Short video Long video arXiv DOI [BibTex]


{GENTEL : GENerating Training data Efficiently for Learning to segment medical images}
GENTEL : GENerating Training data Efficiently for Learning to segment medical images

Thakur, R. P., Rocamora, S. P., Goel, L., Pohmann, R., Machann, J., Black, M. J.

Congrès Reconnaissance des Formes, Image, Apprentissage et Perception (RFAIP), June 2020 (conference)

Abstract
Accurately segmenting MRI images is crucial for many clinical applications. However, manually segmenting images with accurate pixel precision is a tedious and time consuming task. In this paper we present a simple, yet effective method to improve the efficiency of the image segmentation process. We propose to transform the image annotation task into a binary choice task. We start by using classical image processing algorithms with different parameter values to generate multiple, different segmentation masks for each input MRI image. Then, instead of segmenting the pixels of the images, the user only needs to decide whether a segmentation is acceptable or not. This method allows us to efficiently obtain high quality segmentations with minor human intervention. With the selected segmentations, we train a state-of-the-art neural network model. For the evaluation, we use a second MRI dataset (1.5T Dataset), acquired with a different protocol and containing annotations. We show that the trained network i) is able to automatically segment cases where none of the classical methods obtain a high quality result ; ii) generalizes to the second MRI dataset, which was acquired with a different protocol and was never seen at training time ; and iii) enables detection of miss-annotations in this second dataset. Quantitatively, the trained network obtains very good results: DICE score - mean 0.98, median 0.99- and Hausdorff distance (in pixels) - mean 4.7, median 2.0-.

ps

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Generating 3D People in Scenes without People
Generating 3D People in Scenes without People

Zhang, Y., Hassan, M., Neumann, H., Black, M. J., Tang, S.

In Computer Vision and Pattern Recognition (CVPR), pages: 6194-6204, June 2020 (inproceedings)

Abstract
We present a fully automatic system that takes a 3D scene and generates plausible 3D human bodies that are posed naturally in that 3D scene. Given a 3D scene without people, humans can easily imagine how people could interact with the scene and the objects in it. However, this is a challenging task for a computer as solving it requires that (1) the generated human bodies to be semantically plausible within the 3D environment (e.g. people sitting on the sofa or cooking near the stove), and (2) the generated human-scene interaction to be physically feasible such that the human body and scene do not interpenetrate while, at the same time, body-scene contact supports physical interactions. To that end, we make use of the surface-based 3D human model SMPL-X. We first train a conditional variational autoencoder to predict semantically plausible 3D human poses conditioned on latent scene representations, then we further refine the generated 3D bodies using scene constraints to enforce feasible physical interaction. We show that our approach is able to synthesize realistic and expressive 3D human bodies that naturally interact with 3D environment. We perform extensive experiments demonstrating that our generative framework compares favorably with existing methods, both qualitatively and quantitatively. We believe that our scene-conditioned 3D human generation pipeline will be useful for numerous applications; e.g. to generate training data for human pose estimation, in video games and in VR/AR. Our project page for data and code can be seen at: \url{https://vlg.inf.ethz.ch/projects/PSI/}.

ps

Code PDF DOI [BibTex]

Code PDF DOI [BibTex]


no image
Kernel Conditional Density Operators

Schuster, I., Mollenhauer, M., Klus, S., Muandet, K.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 108, pages: 993-1004, Proceedings of Machine Learning Research, (Editors: Silvia Chiappa and Roberto Calandra), PMLR, June 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Learning Physics-guided Face Relighting under Directional Light
Learning Physics-guided Face Relighting under Directional Light

Nestmeyer, T., Lalonde, J., Matthews, I., Lehrmann, A. M.

In Conference on Computer Vision and Pattern Recognition, pages: 5123-5132, IEEE/CVF, June 2020 (inproceedings) Accepted

Abstract
Relighting is an essential step in realistically transferring objects from a captured image into another environment. For example, authentic telepresence in Augmented Reality requires faces to be displayed and relit consistent with the observer's scene lighting. We investigate end-to-end deep learning architectures that both de-light and relight an image of a human face. Our model decomposes the input image into intrinsic components according to a diffuse physics-based image formation model. We enable non-diffuse effects including cast shadows and specular highlights by predicting a residual correction to the diffuse render. To train and evaluate our model, we collected a portrait database of 21 subjects with various expressions and poses. Each sample is captured in a controlled light stage setup with 32 individual light sources. Our method creates precise and believable relighting results and generalizes to complex illumination conditions and challenging poses, including when the subject is not looking straight at the camera.

ps

Paper [BibTex]

Paper [BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), 120, pages: 915-923, Proceedings of Machine Learning Research, (Editors: Alexandre M. Bayen and Ali Jadbabaie and George Pappas and Pablo A. Parrilo and Benjamin Recht and Claire Tomlin and Melanie Zeilinger), PMLR, June 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


{VIBE}: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation

Kocabas, M., Athanasiou, N., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 5252-5262, IEEE, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2020, June 2020 (inproceedings)

Abstract
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methodsfail to produce accurate and natural motion sequences due to a lack of ground-truth 3D motion data for training. To address this problem, we propose “Video Inference for Body Pose and Shape Estimation” (VIBE), which makes use of an existing large-scale motion capture dataset (AMASS) together with unpaired, in-the-wild, 2D keypoint annotations. Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a temporal network architecture and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels. We perform extensive experimentation to analyze the importance of motion and demonstrate the effectiveness of VIBE on challenging 3D pose estimation datasets, achieving state-of-the-art performance. Code and pretrained models are available at https://github.com/mkocabas/VIBE

ps

arXiv code video supplemental video DOI Project Page [BibTex]

arXiv code video supplemental video DOI Project Page [BibTex]


no image
Disentangling Factors of Variations Using Few Labels

Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., Bachem, O.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals
Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals

Laumann, F., von Kügelgen, J., Barahona, M.

ICLR 2020 Workshop "Tackling Climate Change with Machine Learning", April 2020 (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

arXiv [BibTex]


Towards causal generative scene models via competition of experts
Towards causal generative scene models via competition of experts

von Kügelgen*, J., Ustyuzhaninov*, I., Gehler, P., Bethge, M., Schölkopf, B.

ICLR 2020 Workshop "Causal Learning for Decision Making", April 2020, *equal contribution (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
On Mutual Information Maximization for Representation Learning

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S., Lucic, M.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Radial and Directional Posteriors for Bayesian Deep Learning

Oh, C., Adamczewski, K., Park, M.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):5298-5305, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), pages: 5561-5569, Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

ps

pdf [BibTex]

pdf [BibTex]


no image
ODIN: ODE-Informed Regression for Parameter and State Inference in Time-Continuous Dynamical Systems

Wenk, P., Abbati, G., Osborne, M. A., Schölkopf, B., Krause, A., Bauer, S.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):6364-6371, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Interpretable and Differentially Private Predictions

Harder, F., Bauer, M., Park, M.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(4):4083-4090, AAAI Press, Febuary 2020, AAAI Technical Track: Machine Learning (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Commentary on the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 34th Conference on Artificial Intelligence (AAAI), 34(9):13681-13684, AAAI Press, Febuary 2020, Sister Conference Track (conference)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Computationally Tractable Riemannian Manifolds for Graph Embeddings

Cruceru, C., Becigneul, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]


Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem
Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem

Zhu, J., Jitkrittum, W., Diehl, M., Schölkopf, B.

In 59th IEEE Conference on Decision and Control (CDC), 2020 (inproceedings) Accepted

ei

[BibTex]

[BibTex]


no image
Practical Accelerated Optimization on Riemannian Manifolds

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Divide-and-Conquer Monte Carlo Tree Search for goal directed planning

Parascandolo*, G., Buesing*, L., Merel, J., Hasenclever, L., Aslanides, J., Hamrick, J. B., Heess, N., Neitz, A., Weber, T.

2020, *equal contribution (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]

2014


Hough-based Object Detection with Grouped Features
Hough-based Object Detection with Grouped Features

Srikantha, A., Gall, J.

International Conference on Image Processing, pages: 1653-1657, Paris, France, IEEE International Conference on Image Processing , October 2014 (conference)

Abstract
Hough-based voting approaches have been successfully applied to object detection. While these methods can be efficiently implemented by random forests, they estimate the probability for an object hypothesis for each feature independently. In this work, we address this problem by grouping features in a local neighborhood to obtain a better estimate of the probability. To this end, we propose oblique classification-regression forests that combine features of different trees. We further investigate the benefit of combining independent and grouped features and evaluate the approach on RGB and RGB-D datasets.

ps

pdf poster DOI Project Page [BibTex]

2014


pdf poster DOI Project Page [BibTex]


Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds
Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds

Schoenbein, M., Geiger, A.

International Conference on Intelligent Robots and Systems, pages: 716 - 723, IEEE, Chicago, IL, USA, IEEE/RSJ International Conference on Intelligent Robots and System, October 2014 (conference)

Abstract
This paper proposes a method for high-quality omnidirectional 3D reconstruction of augmented Manhattan worlds from catadioptric stereo video sequences. In contrast to existing works we do not rely on constructing virtual perspective views, but instead propose to optimize depth jointly in a unified omnidirectional space. Furthermore, we show that plane-based prior models can be applied even though planes in 3D do not project to planes in the omnidirectional domain. Towards this goal, we propose an omnidirectional slanted-plane Markov random field model which relies on plane hypotheses extracted using a novel voting scheme for 3D planes in omnidirectional space. To quantitatively evaluate our method we introduce a dataset which we have captured using our autonomous driving platform AnnieWAY which we equipped with two horizontally aligned catadioptric cameras and a Velodyne HDL-64E laser scanner for precise ground truth depth measurements. As evidenced by our experiments, the proposed method clearly benefits from the unified view and significantly outperforms existing stereo matching techniques both quantitatively and qualitatively. Furthermore, our method is able to reduce noise and the obtained depth maps can be represented very compactly by a small number of image segments and plane parameters.

avg ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Human Pose Estimation with Fields of Parts
Human Pose Estimation with Fields of Parts

Kiefel, M., Gehler, P.

In Computer Vision – ECCV 2014, LNCS 8693, pages: 331-346, Lecture Notes in Computer Science, (Editors: Fleet, David and Pajdla, Tomas and Schiele, Bernt and Tuytelaars, Tinne), Springer, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
This paper proposes a new formulation of the human pose estimation problem. We present the Fields of Parts model, a binary Conditional Random Field model designed to detect human body parts of articulated people in single images. The Fields of Parts model is inspired by the idea of Pictorial Structures, it models local appearance and joint spatial configuration of the human body. However the underlying graph structure is entirely different. The idea is simple: we model the presence and absence of a body part at every possible position, orientation, and scale in an image with a binary random variable. This results into a vast number of random variables, however, we show that approximate inference in this model is efficient. Moreover we can encode the very same appearance and spatial structure as in Pictorial Structures models. This approach allows us to combine ideas from segmentation and pose estimation into a single model. The Fields of Parts model can use evidence from the background, include local color information, and it is connected more densely than a kinematic chain structure. On the challenging Leeds Sports Poses dataset we improve over the Pictorial Structures counterpart by 5.5% in terms of Average Precision of Keypoints (APK).

ei ps

website pdf DOI Project Page [BibTex]

website pdf DOI Project Page [BibTex]


Capturing Hand Motion with an RGB-D Sensor, Fusing a Generative Model with Salient Points
Capturing Hand Motion with an RGB-D Sensor, Fusing a Generative Model with Salient Points

Tzionas, D., Srikantha, A., Aponte, P., Gall, J.

In German Conference on Pattern Recognition (GCPR), pages: 1-13, Lecture Notes in Computer Science, Springer, GCPR, September 2014 (inproceedings)

Abstract
Hand motion capture has been an active research topic in recent years, following the success of full-body pose tracking. Despite similarities, hand tracking proves to be more challenging, characterized by a higher dimensionality, severe occlusions and self-similarity between fingers. For this reason, most approaches rely on strong assumptions, like hands in isolation or expensive multi-camera systems, that limit the practical use. In this work, we propose a framework for hand tracking that can capture the motion of two interacting hands using only a single, inexpensive RGB-D camera. Our approach combines a generative model with collision detection and discriminatively learned salient points. We quantitatively evaluate our approach on 14 new sequences with challenging interactions.

ps

pdf Supplementary pdf Supplementary Material Project Page DOI Project Page [BibTex]

pdf Supplementary pdf Supplementary Material Project Page DOI Project Page [BibTex]


{OpenDR}: An Approximate Differentiable Renderer
OpenDR: An Approximate Differentiable Renderer

Loper, M. M., Black, M. J.

In Computer Vision – ECCV 2014, 8695, pages: 154-169, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
Inverse graphics attempts to take sensor data and infer 3D geometry, illumination, materials, and motions such that a graphics renderer could realistically reproduce the observed scene. Renderers, however, are designed to solve the forward process of image synthesis. To go in the other direction, we propose an approximate di fferentiable renderer (DR) that explicitly models the relationship between changes in model parameters and image observations. We describe a publicly available OpenDR framework that makes it easy to express a forward graphics model and then automatically obtain derivatives with respect to the model parameters and to optimize over them. Built on a new autodiff erentiation package and OpenGL, OpenDR provides a local optimization method that can be incorporated into probabilistic programming frameworks. We demonstrate the power and simplicity of programming with OpenDR by using it to solve the problem of estimating human body shape from Kinect depth and RGB data.

ps

pdf Code Chumpy Supplementary video of talk DOI Project Page [BibTex]

pdf Code Chumpy Supplementary video of talk DOI Project Page [BibTex]


Discovering Object Classes from Activities
Discovering Object Classes from Activities

Srikantha, A., Gall, J.

In European Conference on Computer Vision, 8694, pages: 415-430, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, 13th European Conference on Computer Vision, September 2014 (inproceedings)

Abstract
In order to avoid an expensive manual labeling process or to learn object classes autonomously without human intervention, object discovery techniques have been proposed that extract visual similar objects from weakly labelled videos. However, the problem of discovering small or medium sized objects is largely unexplored. We observe that videos with activities involving human-object interactions can serve as weakly labelled data for such cases. Since neither object appearance nor motion is distinct enough to discover objects in these videos, we propose a framework that samples from a space of algorithms and their parameters to extract sequences of object proposals. Furthermore, we model similarity of objects based on appearance and functionality, which is derived from human and object motion. We show that functionality is an important cue for discovering objects from activities and demonstrate the generality of the model on three challenging RGB-D and RGB datasets.

ps

pdf anno poster DOI Project Page [BibTex]

pdf anno poster DOI Project Page [BibTex]


Probabilistic Progress Bars
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

ei ps pn

website+code pdf DOI [BibTex]

website+code pdf DOI [BibTex]