Header logo is


2018


Deep Reinforcement Learning for Event-Triggered Control
Deep Reinforcement Learning for Event-Triggered Control

Baumann, D., Zhu, J., Martius, G., Trimpe, S.

In Proceedings of the 57th IEEE International Conference on Decision and Control (CDC), pages: 943-950, 57th IEEE International Conference on Decision and Control (CDC), December 2018 (inproceedings)

al ics

arXiv PDF DOI Project Page Project Page [BibTex]

2018


arXiv PDF DOI Project Page Project Page [BibTex]


Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace
Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fail with Grace

Heim, S., Sproewitz, A.

Proceedings of SIMPAR 2018, pages: 55-61, IEEE, 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), May 2018 (conference)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Impact of Trunk Orientation  for Dynamic Bipedal Locomotion
Impact of Trunk Orientation for Dynamic Bipedal Locomotion

Drama, Ö.

Dynamic Walking Conference, May 2018 (talk)

Abstract
Impact of trunk orientation for dynamic bipedal locomotion My research revolves around investigating the functional demands of bipedal running, with focus on stabilizing trunk orientation. When we think about postural stability, there are two critical questions we need to answer: What are the necessary and sufficient conditions to achieve and maintain trunk stability? I am concentrating on how morphology affects control strategies in achieving trunk stability. In particular, I denote the trunk pitch as the predominant morphology parameter and explore the requirements it imposes on a chosen control strategy. To analyze this, I use a spring loaded inverted pendulum model extended with a rigid trunk, which is actuated by a hip motor. The challenge for the controller design here is to have a single hip actuator to achieve two coupled tasks of moving the legs to generate motion and stabilizing the trunk. I enforce orthograde and pronograde postures and aim to identify the effect of these trunk orientations on the hip torque and ground reaction profiles for different control strategies.

dlg

Impact of trunk orientation for dynamic bipedal locomotion [DW 2018] link (url) Project Page [BibTex]


Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware
Shaping in Practice: Training Wheels to Learn Fast Hopping Directly in Hardware

Heim, S., Ruppert, F., Sarvestani, A., Sproewitz, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, pages: 5076-5081, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
Learning instead of designing robot controllers can greatly reduce engineering effort required, while also emphasizing robustness. Despite considerable progress in simulation, applying learning directly in hardware is still challenging, in part due to the necessity to explore potentially unstable parameters. We explore the of concept shaping the reward landscape with training wheels; temporary modifications of the physical hardware that facilitate learning. We demonstrate the concept with a robot leg mounted on a boom learning to hop fast. This proof of concept embodies typical challenges such as instability and contact, while being simple enough to empirically map out and visualize the reward landscape. Based on our results we propose three criteria for designing effective training wheels for learning in robotics.

dlg

Video Youtube link (url) Project Page [BibTex]

Video Youtube link (url) Project Page [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
L4: Practical loss-based stepsize adaptation for deep learning

Rolinek, M., Martius, G.

In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), pages: 6434-6444, (Editors: S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett), Curran Associates, Inc., 2018 (inproceedings)

al

Github link (url) Project Page [BibTex]

Github link (url) Project Page [BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Systematic self-exploration of behaviors for robots in a dynamical systems framework
Systematic self-exploration of behaviors for robots in a dynamical systems framework

Pinneri, C., Martius, G.

In Proc. Artificial Life XI, pages: 319-326, MIT Press, Cambridge, MA, 2018 (inproceedings)

Abstract
One of the challenges of this century is to understand the neural mechanisms behind cognitive control and learning. Recent investigations propose biologically plausible synaptic mechanisms for self-organizing controllers, in the spirit of Hebbian learning. In particular, differential extrinsic plasticity (DEP) [Der and Martius, PNAS 2015], has proven to enable embodied agents to self-organize their individual sensorimotor development, and generate highly coordinated behaviors during their interaction with the environment. These behaviors are attractors of a dynamical system. In this paper, we use the DEP rule to generate attractors and we combine it with a “repelling potential” which allows the system to actively explore all its attractor behaviors in a systematic way. With a view to a self-determined exploration of goal-free behaviors, our framework enables switching between different motion patterns in an autonomous and sequential fashion. Our algorithm is able to recover all the attractor behaviors in a toy system and it is also effective in two simulated environments. A spherical robot discovers all its major rolling modes and a hexapod robot learns to locomote in 50 different ways in 30min.

al

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Learning equations for extrapolation and control
Learning equations for extrapolation and control

Sahoo, S. S., Lampert, C. H., Martius, G.

In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018, 80, pages: 4442-4450, http://proceedings.mlr.press/v80/sahoo18a/sahoo18a.pdf, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, 2018 (inproceedings)

Abstract
We present an approach to identify concise equations from data using a shallow neural network approach. In contrast to ordinary black-box regression, this approach allows understanding functional relations and generalizing them from observed data to unseen parts of the parameter space. We show how to extend the class of learnable equations for a recently proposed equation learning network to include divisions, and we improve the learning and model selection strategy to be useful for challenging real-world data. For systems governed by analytical expressions, our method can in many cases identify the true underlying equation and extrapolate to unseen domains. We demonstrate its effectiveness by experiments on a cart-pendulum system, where only 2 random rollouts are required to learn the forward dynamics and successfully achieve the swing-up task.

al

Code Arxiv Poster Slides link (url) Project Page [BibTex]

Code Arxiv Poster Slides link (url) Project Page [BibTex]


Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns
Robust Affordable 3D Haptic Sensation via Learning Deformation Patterns

Sun, H., Martius, G.

Proceedings International Conference on Humanoid Robots, pages: 846-853, IEEE, New York, NY, USA, 2018 IEEE-RAS International Conference on Humanoid Robots, 2018, Oral Presentation (conference)

Abstract
Haptic sensation is an important modality for interacting with the real world. This paper proposes a general framework of inferring haptic forces on the surface of a 3D structure from internal deformations using a small number of physical sensors instead of employing dense sensor arrays. Using machine learning techniques, we optimize the sensor number and their placement and are able to obtain high-precision force inference for a robotic limb using as few as 9 sensors. For the optimal and sparse placement of the measurement units (strain gauges), we employ data-driven methods based on data obtained by finite element simulation. We compare data-driven approaches with model-based methods relying on geometric distance and information criteria such as Entropy and Mutual Information. We validate our approach on a modified limb of the “Poppy” robot [1] and obtain 8 mm localization precision.

al

DOI Project Page [BibTex]

DOI Project Page [BibTex]

2013


no image
Angular Motion Control Using a Closed-Loop CPG for a Water-Running Robot

Thatte, N., Khoramshahi, M., Ijspeert, A., Sitti, M.

In Dynamic Walking 2013, (EPFL-CONF-199763), 2013 (inproceedings)

pi

[BibTex]

2013


[BibTex]


no image
Light-induced microbubble poration of localized cells

Fan, Qihui, Hu, Wenqi, Ohta, Aaron T

In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pages: 4482-4485, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A hybrid topological and structural optimization method to design a 3-DOF planar motion compliant mechanism

Lum, G. Z., Teo, T. J., Yang, G., Yeo, S. H., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2013 IEEE/ASME International Conference on, pages: 247-254, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Behavior as broken symmetry in embodied self-organizing robots

Der, R., Martius, G.

In Advances in Artificial Life, ECAL 2013, pages: 601-608, MIT Press, 2013 (incollection)

al

[BibTex]

[BibTex]


no image
SoftCubes: towards a soft modular matter

Yim, S., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 530-536, 2013 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Flapping wings via direct-driving by DC motors

Azhar, M., Campolo, D., Lau, G., Hines, L., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 1397-1402, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Three dimensional independent control of multiple magnetic microrobots

Diller, E., Giltinan, J., Jena, P., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 2576-2581, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A Perching Mechanism for Flying Robots Using a Fibre-Based Adhesive

Daler, L., Klaptocz, A., Briod, A., Sitti, M., Floreano, D.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Bonding methods for modular micro-robotic assemblies

Diller, E., Zhang, N., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 2588-2593, 2013 (inproceedings)

pi

[BibTex]

[BibTex]

2008


no image
Simulation and analysis of a passive pitch reversal flapping wing mechanism for an aerial robotic platform

Arabagi, V., Sitti, M.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages: 1260-1265, 2008 (inproceedings)

pi

Project Page [BibTex]

2008


Project Page [BibTex]


no image
Fabrication and Characterization of Biologically Inspired Mushroom-Shaped Elastomer Microfiber Arrays

Kim, S., Sitti, M.

In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pages: 839-847, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Gecko inspired micro-fibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces

Aksak, B., Murphy, M. P., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 3058-3063, 2008 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Miniature Mobile Robots Down to Micron Scale

Sitti, M.

In Micro-NanoMechatronics and Human Science, 2008. MHS 2008. International Symposium on, pages: 525-525, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Polymeric Micro/Nanofiber Manufacturing and Mechanical Characterization

Nain, A. S., Sitti, M., Amon, C.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 295-303, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces

Floyd, S., Pawashe, C., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 419-424, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Fabrication of bio-inspired elastomer nanofiber arrays with spatulate tips using notching effect

Kim, S., Sitti, M., Jang, J., Thomas, E. L.

In Nanotechnology, 2008. NANO’08. 8th IEEE Conference on, pages: 780-782, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A motorized anchoring mechanism for a tethered capsule robot using fibrillar adhesives for interventions in the esophagus

Glass, P., Cheung, E., Wang, H., Appasamy, R., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, pages: 758-764, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Emergence of Interaction Among Adaptive Agents

Martius, G., Nolfi, S., Herrmann, J. M.

In Proc. From Animals to Animats 10 (SAB 2008), 5040, pages: 457-466, LNCS, Springer, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Fabrication of Single and Multi-Layer Fibrous Biomaterial Scaffolds for Tissue Engineering

Nain, A. S., Miller, E., Sitti, M., Campbell, P., Amon, C.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 231-238, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Performance of different foot designs for a water running robot

Floyd, S., Adilak, S., Ramirez, S., Rogman, R., Sitti, M.

In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pages: 244-250, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages: 3101-3107, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Bacterial propulsion of chemically patterned micro-cylinders

Behkam, B., Sitti, M.

In Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on, pages: 753-757, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Structure from Behavior in Autonomous Agents

Martius, G., Fiedler, K., Herrmann, J.

In Proc. IEEE Intl. Conf. Intelligent Robots and Systems (IROS 2008), pages: 858 - 862, 2008 (inproceedings)

al

DOI [BibTex]

DOI [BibTex]


no image
Design and Numerical Modeling of an On-Board Chemical Release Module for Motion Control of Bacteria-Propelled Swimming Micro-Robots

Behkam, B., Nain, A. S., Amon, C. H., Sitti, M.

In ASME 2008 International Mechanical Engineering Congress and Exposition, pages: 239-244, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Investigation of Calcium Mechanotransduction by Quasi 3-D Microfiber Mechanical Stimulation of Cells

Ruder, W. C., Pratt, E. D., Sitti, M., LeDuc, P. R., Antaki, J. F.

In ASME 2008 Summer Bioengineering Conference, pages: 1049-1050, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Beanbag robotics: Robotic swarms with 1-dof units

Kriesel, D. M., Cheung, E., Sitti, M., Lipson, H.

In International Conference on Ant Colony Optimization and Swarm Intelligence, pages: 267-274, 2008 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Particle image velocimetry and thrust of flagellar micro propulsion systems

Danis, U., Sitti, M., Pekkan, K.

In APS Division of Fluid Dynamics Meeting Abstracts, 1, 2008 (inproceedings)

pi

[BibTex]

[BibTex]

2000


no image
Wing transmission for a micromechanical flying insect

Fearing, R. S., Chiang, K. H., Dickinson, M. H., Pick, D., Sitti, M., Yan, J.

In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, 2, pages: 1509-1516, 2000 (inproceedings)

pi

[BibTex]

2000


[BibTex]