Header logo is


2017


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

2017


arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Optimizing Long-term Predictions for Model-based Policy Search
Optimizing Long-term Predictions for Model-based Policy Search

Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.

Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)

Abstract
We propose a novel long-term optimization criterion to improve the robustness of model-based reinforcement learning in real-world scenarios. Learning a dynamics model to derive a solution promises much greater data-efficiency and reusability compared to model-free alternatives. In practice, however, modelbased RL suffers from various imperfections such as noisy input and output data, delays and unmeasured (latent) states. To achieve higher resilience against such effects, we propose to optimize a generative long-term prediction model directly with respect to the likelihood of observed trajectories as opposed to the common approach of optimizing a dynamics model for one-step-ahead predictions. We evaluate the proposed method on several artificial and real-world benchmark problems and compare it to PILCO, a model-based RL framework, in experiments on a manipulation robot. The results show that the proposed method is competitive compared to state-of-the-art model learning methods. In contrast to these more involved models, our model can directly be employed for policy search and outperforms a baseline method in the robot experiment.

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
From Monocular SLAM to Autonomous Drone Exploration

von Stumberg, L., Usenko, V., Engel, J., Stueckler, J., Cremers, D.

In European Conference on Mobile Robots (ECMR), September 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Event-based State Estimation: An Emulation-based Approach

Trimpe, S.

IET Control Theory & Applications, 11(11):1684-1693, July 2017 (article)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.

am ics

arXiv Supplementary material PDF DOI Project Page [BibTex]

arXiv Supplementary material PDF DOI Project Page [BibTex]


Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers

Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics

PDF arXiv DOI Project Page [BibTex]

PDF arXiv DOI Project Page [BibTex]


Virtual vs. {R}eal: Trading Off Simulations and Physical Experiments in Reinforcement Learning with {B}ayesian Optimization
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders
Scalable Pneumatic and Tendon Driven Robotic Joint Inspired by Jumping Spiders

Sproewitz, A., Göttler, C., Sinha, A., Caer, C., Öztekin, M. U., Petersen, K., Sitti, M.

In Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), pages: 64-70, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

dlg

Video link (url) DOI Project Page [BibTex]

Video link (url) DOI Project Page [BibTex]


Spinal joint compliance and actuation in a simulated bounding quadruped robot
Spinal joint compliance and actuation in a simulated bounding quadruped robot

Pouya, S., Khodabakhsh, M., Sproewitz, A., Ijspeert, A.

{Autonomous Robots}, pages: 437–452, Kluwer Academic Publishers, Springer, Dordrecht, New York, NY, Febuary 2017 (article)

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Linking {Mechanics} and {Learning}
Linking Mechanics and Learning

Heim, S., Grimminger, F., Özge, D., Spröwitz, A.

In Proceedings of Dynamic Walking 2017, 2017 (inproceedings)

dlg

[BibTex]

[BibTex]


Is Growing Good for Learning?
Is Growing Good for Learning?

Heim, S., Spröwitz, A.

Proceedings of the 8th International Symposium on Adaptive Motion of Animals and Machines AMAM2017, 2017 (conference)

dlg

[BibTex]

[BibTex]


no image
Multi-View Deep Learning for Consistent Semantic Mapping with RGB-D Cameras

Ma, L., Stueckler, J., Kerl, C., Cremers, D.

In IEEE International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Accurate depth and normal maps from occlusion-aware focal stack symmetry

Strecke, M., Alperovich, A., Goldluecke, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


Evaluation of the passive dynamics of compliant legs with inertia
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Semi-Supervised Deep Learning for Monocular Depth Map Prediction

Kuznietsov, Y., Stueckler, J., Leibe, B.

In IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
Community detection, link prediction, and layer interdependence in multilayer networks

De Bacco, C., Power, E. A., Larremore, D. B., Moore, C.

Physical Review E, 95(4):042317, APS, 2017 (article)

pio

Code Preprint link (url) Project Page [BibTex]

Code Preprint link (url) Project Page [BibTex]


no image
Shadow and Specularity Priors for Intrinsic Light Field Decomposition

Alperovich, A., Johannsen, O., Strecke, M., Goldluecke, B.

In Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR), 2017 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Keyframe-Based Visual-Inertial Online SLAM with Relocalization

Kasyanov, A., Engelmann, F., Stueckler, J., Leibe, B.

In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, IROS, 2017 (inproceedings)

ev

[BibTex]

[BibTex]


no image
SAMP: Shape and Motion Priors for 4D Vehicle Reconstruction

Engelmann, F., Stueckler, J., Leibe, B.

In IEEE Winter Conference on Applications of Computer Vision, WACV, 2017 (inproceedings)

ev

[BibTex]

[BibTex]

2010


no image
Accelerometer-based Tilt Estimation of a Rigid Body with only Rotational Degrees of Freedom

Trimpe, S., D’Andrea, R.

In Proceedings of the IEEE International Conference on Robotics and Automation, 2010 (inproceedings)

am ics

PDF DOI [BibTex]

2010


PDF DOI [BibTex]


Graph signature for self-reconfiguration planning of modules with symmetry
Graph signature for self-reconfiguration planning of modules with symmetry

Asadpour, M., Ashtiani, M. H. Z., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 5295-5300, IEEE, St. Louis, MO, 2010 (inproceedings)

Abstract
In our previous works we had developed a framework for self-reconfiguration planning based on graph signature and graph edit-distance. The graph signature is a fast isomorphism test between different configurations and the graph edit-distance is a similarity metric. But the algorithm is not suitable for modules with symmetry. In this paper we improve the algorithm in order to deal with symmetric modules. Also, we present a new heuristic function to guide the search strategy by penalizing the solutions with more number of actions. The simulation results show the new algorithm not only deals with symmetric modules successfully but also finds better solutions in a shorter time.

dlg

DOI [BibTex]

DOI [BibTex]


Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules
Roombots - Towards decentralized reconfiguration with self-reconfiguring modular robotic metamodules

Spröwitz, A., Laprade, P., Bonardi, S., Mayer, M., Moeckel, R., Mudry, P., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1126-1132, IEEE, Taipeh, 2010 (inproceedings)

Abstract
This paper presents our work towards a decentralized reconfiguration strategy for self-reconfiguring modular robots, assembling furniture-like structures from Roombots (RB) metamodules. We explore how reconfiguration by loco- motion from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using Roombots metamodules—two Roombots modules connected serially—that use broadcast signals, lookup tables of their movement space, assumptions about their neighborhood, and connections to a structured surface to collectively build desired structures without the need of a centralized planner.

dlg

DOI [BibTex]

DOI [BibTex]


Roombots: Reconfigurable Robots for Adaptive Furniture
Roombots: Reconfigurable Robots for Adaptive Furniture

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel, R., Billard, A., Dillenbourg, P., Ijspeert, A.

Computational Intelligence Magazine, IEEE, 5(3):20-32, 2010 (article)

Abstract
Imagine a world in which our furniture moves around like legged robots, interacts with us, and changes shape and function during the day according to our needs. This is the long term vision we have in the Roombots project. To work towards this dream, we are developing modular robotic modules that have rotational degrees of freedom for locomotion as well as active connection mechanisms for runtime reconfiguration. A piece of furniture, e.g. a stool, will thus be composed of several modules that activate their rotational joints together to implement locomotor gaits, and will be able to change shape, e.g. transforming into a chair, by sequences of attachments and detachments of modules. In this article, we firstly present the project and the hardware we are currently developing. We explore how reconfiguration from a configuration A to a configuration B can be controlled in a distributed fashion. This is done using metamodules-two Roombots modules connected serially-that use broadcast signals and connections to a structured ground to collectively build desired structures without the need of a centralized planner. We then present how locomotion controllers can be implemented in a distributed system of coupled oscillators-one per degree of freedom-similarly to the concept of central pattern generators (CPGs) found in the spinal cord of vertebrate animals. The CPGs are based on coupled phase oscillators to ensure synchronized behavior and have different output filters to allow switching between oscillations and rotations. A stochastic optimization algorithm is used to explore optimal CPG configurations for different simulated Roombots structures.

dlg

DOI [BibTex]

DOI [BibTex]


Distributed Online Learning of Central Pattern Generators in Modular Robots
Distributed Online Learning of Central Pattern Generators in Modular Robots

Christensen, D. J., Spröwitz, A., Ijspeert, A. J.

In From Animals to Animats 11, 6226, pages: 402-412, Lecture Notes in Computer Science, Springer, Berlin, 2010, author: Doncieux, Stéphan (incollection)

Abstract
In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic ap- proximation method, SPSA, which optimizes the parameters of coupled oscillators used to generate periodic actuation patterns. The strategy is implemented in a distributed fashion, based on a globally shared reward signal, but otherwise utilizing local communication only. In a physics-based simulation of modular Roombots robots we experiment with online learn- ing of gaits and study the effects of: module failures, different robot morphologies, and rough terrains. The experiments demonstrate fast online learning, typically 5-30 min. for convergence to high performing gaits (≈ 30 cm/sec), despite high numbers of open parameters (45-54). We conclude that the proposed approach is efficient, effective and a promising candidate for online learning on many other robotic platforms.

dlg

DOI [BibTex]

DOI [BibTex]


Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question
Automatic Gait Generation in Modular Robots: to Oscillate or to Rotate? that is the question

Pouya, S., van den Kieboom, J., Spröwitz, A., Ijspeert, A. J.

In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 514-520, IEEE, Taipei, 2010 (inproceedings)

Abstract
Modular robots offer the possibility to design robots with a high diversity of shapes and functionalities. This nice feature also brings an important challenge: namely how to design efficient locomotion gaits for arbitrary robot structures with many degrees of freedom. In this paper, we present a framework that allows one to explore and identify highly different gaits for a given arbitrary- shaped modular robot. We use simulated robots made of several Roombots modules that have three rotational joints each. These modules have the interesting feature that they can produce both oscillatory movements (i.e. periodic movements around a rest position) and rotational movements (i.e. with continuously increasing angle), leading to very rich locomotion patterns. Here we ask ourselves which types of movements —purely oscillatory, purely rotational, or a combination of both— lead to the fastest gaits. To address this question we designed a control architecture based on a distributed system of coupled phase oscillators that can produce synchronized rotations and oscillations in many degrees of freedom. We also designed a specific optimization algorithm that can automatically design hybrid controllers, i.e. controllers that use oscillations in some joints and rotations in others, for fast gaits. The proposed framework is verified by multiple simulations for several robot morphologies. The results show that (i) the question whether it is better to oscillate or to rotate depends on the morphology of the robot, and that in general it is best to do both, (ii) the optimization framework can successfully generate hybrid controllers that outperform purely oscillatory and purely rotational ones, and (iii) the resulting gaits are fast, innovative, and would have been hard to design by hand.

dlg

DOI [BibTex]

DOI [BibTex]


Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion
Roombots: Design and Implementation of a Modular Robot for Reconfiguration and Locomotion

Spröwitz, A.

EPFL, Lausanne, Lausanne, 2010 (phdthesis)

dlg

DOI [BibTex]


no image
Combining depth and color cues for scale- and viewpoint-invariant object segmentation and recognition using Random Forests

Stueckler, J., Behnke, S.

In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages: 4566-4571, October 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Intuitive Multimodal Interaction for Domestic Service Robots

Nieuwenhuisen, M., Stueckler, J., Behnke, S.

In Proc. of the ISR/ROBOTIK, VDE Verlag, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Improving People Awareness of Service Robots by Semantic Scene Knowledge

Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 157-168, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Semantic Scene Analysis with Time-of-flight Cameras

Holz, D., Schnabel, R., Droeschel, D., Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 121-132, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Utilizing the Structure of Field Lines for Efficient Soccer Robot Localization

Schulz, H., Liu, W., Stueckler, J., Behnke, S.

In RobuCup, 6556, pages: 397-408, Lecture Notes in Computer Science, Springer, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Improving indoor navigation of autonomous robots by an explicit representation of doors

Nieuwenhuisen, M., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4895-4901, May 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Improving imitated grasping motions through interactive expected deviation learning

Gräve, K., Stueckler, J., Behnke, S.

In Proc. of the 10th IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids), pages: 397-404, December 2010 (inproceedings)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Skills from Expert Demonstrations and Own Experience using Gaussian Process Regression

Gräve, K., Stueckler, J., Behnke, S.

In Proc. of the ISR/ROBOTIK, pages: 1-8, VDE Verlag, 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]


no image
Using Time-of-Flight cameras with active gaze control for 3D collision avoidance

Droeschel, D., Holz, D., Stueckler, J., Behnke, S.

In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4035-4040, May 2010 (inproceedings)

ev

link (url) [BibTex]

link (url) [BibTex]