Header logo is


2015


no image
Perception of Deformable Objects and Compliant Manipulation for Service Robots

Stueckler, J., Behnke, S.

In Soft Robotics: From Theory to Applications, Springer, 2015 (inbook)

ev

link (url) [BibTex]

2015


link (url) [BibTex]

2014


no image
Active Recognition and Manipulation for Mobile Robot Bin Picking

Holz, D., Nieuwenhuisen, M., Droeschel, D., Stueckler, J., Berner, A., Li, J., Klein, R., Behnke, S.

In Gearing Up and Accelerating Cross-fertilization between Academic and Industrial Robotics Research in Europe: Technology Transfer Experiments from the ECHORD Project, pages: 133-153, Springer, 2014 (inbook)

ev

link (url) DOI [BibTex]

2014


link (url) DOI [BibTex]


no image
Increasing Flexibility of Mobile Manipulation and Intuitive Human-Robot Interaction in RoboCup@Home

Stueckler, J., Droeschel, D., Gräve, K., Holz, D., Schreiber, M., Topaldou-Kyniazopoulou, A., Schwarz, M., Behnke, S.

In RoboCup 2013, Robot Soccer World Cup XVII, pages: 135-146, Springer, 2014 (inbook)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2013


Thumb xl screen shot 2018 02 03 at 11.54.31 am
Motor Control Adaptation to Changes in Robot Body Dynamics for a Compliant Quadruped Robot

Pouya, S., Eckert, P., Spröwitz, A., Moc̈kel, R., Ijspeert, A. J.

In Biomimetic and Biohybrid Systems, 8064, pages: 434-437, Lecture Notes in Computer Science, Springer, Heidelberg, 2013 (incollection)

Abstract
One of the major deficiencies of current robots in comparison to living beings is the ability to adapt to new conditions either resulting from environmental changes or their own dynamics. In this work we focus on situations where the robot experiences involuntary changes in its body particularly in its limbs’ inertia. Inspired from its biological counterparts we are interested in enabling the robot to adapt its motor control to the new system dynamics. To reach this goal, we propose two different control strategies and compare their performance when handling these modifications. Our results show substantial improvements in adaptivity to body changes when the robot is aware of its new dynamics and can exploit this knowledge in synthesising new motor control.

dlg

DOI [BibTex]

2013


DOI [BibTex]


no image
NimbRo@Home: Winning Team of the RoboCup@Home Competition 2012

Stueckler, J., Badami, I., Droeschel, D., Gräve, K., Holz, D., McElhone, M., Nieuwenhuisen, M., Schreiber, M., Schwarz, M., Behnke, S.

In RoboCup 2012, Robot Soccer World Cup XVI, pages: 94-105, Springer, 2013 (inbook)

ev

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2012


no image
Towards Robust Mobility, Flexible Object Manipulation, and Intuitive Multimodal Interaction for Domestic Service Robots

Stueckler, J., Droeschel, D., Gräve, K., Holz, D., Kläß, J., Schreiber, M., Steffens, R., Behnke, S.

In RoboCup 2011, Robot Soccer World Cup XV, pages: 51-62, Springer, 2012 (inbook)

ev

link (url) DOI [BibTex]

2012


link (url) DOI [BibTex]

2010


Thumb xl screen shot 2018 02 03 at 4.24.19 pm
Distributed Online Learning of Central Pattern Generators in Modular Robots

Christensen, D. J., Spröwitz, A., Ijspeert, A. J.

In From Animals to Animats 11, 6226, pages: 402-412, Lecture Notes in Computer Science, Springer, Berlin, 2010, author: Doncieux, Stéphan (incollection)

Abstract
In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic ap- proximation method, SPSA, which optimizes the parameters of coupled oscillators used to generate periodic actuation patterns. The strategy is implemented in a distributed fashion, based on a globally shared reward signal, but otherwise utilizing local communication only. In a physics-based simulation of modular Roombots robots we experiment with online learn- ing of gaits and study the effects of: module failures, different robot morphologies, and rough terrains. The experiments demonstrate fast online learning, typically 5-30 min. for convergence to high performing gaits (≈ 30 cm/sec), despite high numbers of open parameters (45-54). We conclude that the proposed approach is efficient, effective and a promising candidate for online learning on many other robotic platforms.

dlg

DOI [BibTex]

2010


DOI [BibTex]