Header logo is


2020


Thumb xl hetl
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article) To be published

ics

arXiv PDF DOI [BibTex]

2020


arXiv PDF DOI [BibTex]


Thumb xl l css
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article) To be published

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]

2019


no image
Selecting causal brain features with a single conditional independence test per feature

Mastakouri, A., Schölkopf, B., Janzing, D.

Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference) Accepted

ei

[BibTex]

2019


[BibTex]


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl fire
Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources

Haksar, R., Solowjow, F., Trimpe, S., Schwager, M.

In Proceedings of the 58th IEEE International Conference on Decision and Control (CDC) , 58th IEEE International Conference on Decision and Control (CDC), December 2019 (proceedings) Accepted

ics

PDF [BibTex]

PDF [BibTex]


no image
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

von Kügelgen, J., Rubenstein, P., Schölkopf, B., Weller, A.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl 0050 samples slip fig
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

Arxiv [BibTex]


Thumb xl mode changes long exp
Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees

Baumann, D., Mager, F., Jacob, R., Thiele, L., Zimmerling, M., Trimpe, S.

ACM Transactions on Cyber-Physical Systems, 4(2):18, November 2019 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
Interactive Augmented Reality for Robot-Assisted Surgery

Forte, M. P., Kuchenbecker, K. J.

Workshop extended abstract presented as a podium presentation at the IROS Workshop on Legacy Disruptors in Applied Telerobotics, Macau, November 2019 (misc) Accepted

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl teaser
EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Strecke, M., Stückler, J.

In International Conference on Computer Vision, October 2019, arXiv:1904.11781 (inproceedings)

ev

preprint Project page Poster [BibTex]

preprint Project page Poster [BibTex]


no image
Neural Signatures of Motor Skill in the Resting Brain

Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), October 2019 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Convolutional neural networks: A magic bullet for gravitational-wave detection?

Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.

Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl distributed pt control
Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems

Mastrangelo, J. M., Baumann, D., Trimpe, S.

In Proceedings of the 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), September 2019 (inproceedings)

ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Data scarcity, robustness and extreme multi-label classification

Babbar, R., Schölkopf, B.

Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)

ei

DOI [BibTex]

DOI [BibTex]


no image
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance

Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.

Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
High-Fidelity Multiphysics Finite Element Modeling of Finger-Surface Interactions with Tactile Feedback

Serhat, G., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
In this study, we develop a high-fidelity finite element (FE) analysis framework that enables multiphysics simulation of the human finger in contact with a surface that is providing tactile feedback. We aim to elucidate a variety of physical interactions that can occur at finger-surface interfaces, including contact, friction, vibration, and electrovibration. We also develop novel FE-based methods that will allow prediction of nonconventional features such as real finger-surface contact area and finger stickiness. We envision using the developed computational tools for efficient design and optimization of haptic devices by replacing expensive and lengthy experimental procedures with high-fidelity simulation.

hi

[BibTex]

[BibTex]


no image
Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory

Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., Schölkopf, B.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 49, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Fingertip Friction Enhances Perception of Normal Force Changes

Gueorguiev, D., Lambert, J., Thonnard, J., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
Using a force-controlled robotic platform, we tested the human perception of positive and negative modulations in normal force during passive dynamic touch, which also induced a strong related change in the finger-surface lateral force. In a two-alternative forced-choice task, eleven participants had to detect brief variations in the normal force compared to a constant controlled pre-stimulation force of 1 N and report whether it had increased or decreased. The average 75% just noticeable difference (JND) was found to be around 0.25 N for detecting the peak change and 0.30 N for correctly reporting the increase or the decrease. Interestingly, the friction coefficient of a subject’s fingertip positively correlated with his or her performance at detecting the change and reporting its direction, which suggests that humans may use the lateral force as a sensory cue to perceive variations in the normal force.

hi

[BibTex]

[BibTex]


Thumb xl acc pulse ctrl
Event-triggered Pulse Control with Model Learning (if Necessary)

Baumann, D., Solowjow, F., Johansson, K. H., Trimpe, S.

In Proceedings of the American Control Conference, pages: 792-797, American Control Conference (ACC), July 2019 (inproceedings)

ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding

Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., Silva, R.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 213, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl image
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


no image
The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA

Gresele*, L., Rubenstein*, P. K., Mehrjou, A., Locatello, F., Schölkopf, B.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 53, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl pocketrendering
Inflatable Haptic Sensor for the Torso of a Hugging Robot

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
During hugs, humans naturally provide and intuit subtle non-verbal cues that signify the strength and duration of an exchanged hug. Personal preferences for this close interaction may vary greatly between people; robots do not currently have the abilities to perceive or understand these preferences. This work-in-progress paper discusses designing, building, and testing a novel inflatable torso that can simultaneously soften a robot and act as a tactile sensor to enable more natural and responsive hugging. Using PVC vinyl, a microphone, and a barometric pressure sensor, we created a small test chamber to demonstrate a proof of concept for the full torso. While contacting the chamber in several ways common in hugs (pat, squeeze, scratch, and rub), we recorded data from the two sensors. The preliminary results suggest that the complementary haptic sensing channels allow us to detect coarse and fine contacts typically experienced during hugs, regardless of user hand placement.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl figure1
Understanding the Pull-off Force of the Human Fingerpad

Nam, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
To understand the adhesive force that occurs when a finger pulls off of a smooth surface, we built an apparatus to measure the fingerpad’s moisture, normal force, and real contact area over time during interactions with a glass plate. We recorded a total of 450 trials (45 interactions by each of ten human subjects), capturing a wide range of values across the aforementioned variables. The experimental results showed that the pull-off force increases with larger finger contact area and faster detachment rate. Additionally, moisture generally increases the contact area of the finger, but too much moisture can restrict the increase in the pull-off force.

hi

[BibTex]

[BibTex]


Thumb xl h a image3
The Haptician and the Alphamonsters

Forte, M. P., L’Orsa, R., Mohan, M., Nam, S., Kuchenbecker, K. J.

Student Innovation Challenge on Implementing Haptics in Virtual Reality Environment presented at the IEEE World Haptics Conference, Tokyo, Japan, July 2019, Maria Paola Forte, Rachael L'Orsa, Mayumi Mohan, and Saekwang Nam contributed equally to this publication (misc)

Abstract
Dysgraphia is a neurological disorder characterized by writing disabilities that affects between 7% and 15% of children. It presents itself in the form of unfinished letters, letter distortion, inconsistent letter size, letter collision, etc. Traditional therapeutic exercises require continuous assistance from teachers or occupational therapists. Autonomous partial or full haptic guidance can produce positive results, but children often become bored with the repetitive nature of such activities. Conversely, virtual rehabilitation with video games represents a new frontier for occupational therapy due to its highly motivational nature. Virtual reality (VR) adds an element of novelty and entertainment to therapy, thus motivating players to perform exercises more regularly. We propose leveraging the HTC VIVE Pro and the EXOS Wrist DK2 to create an immersive spellcasting “exergame” (exercise game) that helps motivate children with dysgraphia to improve writing fluency.

hi

Student Innovation Challenge – Virtual Reality [BibTex]

Student Innovation Challenge – Virtual Reality [BibTex]


Thumb xl screenshot 2019 04 08 at 16.08.19
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K., Ghahramani, Z.

Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 124, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Kernel Mean Matching for Content Addressability of GANs

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl pic
Data-driven inference of passivity properties via Gaussian process optimization

Romer, A., Trimpe, S., Allgöwer, F.

In Proceedings of the European Control Conference, European Control Conference (ECC), June 2019 (inproceedings)

ics

PDF [BibTex]

PDF [BibTex]


no image
Actively Learning Gaussian Process Dynamics

Buisson-Fenet, M., Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

Abstract
Despite the availability of ever more data enabled through modern sensor and computer technology, it still remains an open problem to learn dynamical systems in a sample-efficient way. We propose active learning strategies that leverage information-theoretical properties arising naturally during Gaussian process regression, while respecting constraints on the sampling process imposed by the system dynamics. Sample points are selected in regions with high uncertainty, leading to exploratory behavior and data-efficient training of the model. All results are verified in an extensive numerical benchmark.

ics

ArXiv [BibTex]


Thumb xl cvpr2019 demo v2.001
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

ei ps

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


no image
Generate Semantically Similar Images with Kernel Mean Matching

Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.

6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Projections for Approximate Policy Iteration Algorithms

Akrour, R., Pajarinen, J., Peters, J., Neumann, G.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 181-190, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl motorized device
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI [BibTex]


Thumb xl coverimage1
Trajectory-Based Off-Policy Deep Reinforcement Learning

Doerr, A., Volpp, M., Toussaint, M., Trimpe, S., Daniel, C.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), June 2019 (inproceedings)

Abstract
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.

ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Switching Linear Dynamics for Variational Bayes Filtering

Becker-Ehmck, P., Peters, J., van der Smagt, P.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 553-562, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness

Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl trimpe2019resource image
Resource-aware IoT Control: Saving Communication through Predictive Triggering

Trimpe, S., Baumann, D.

IEEE Internet of Things Journal, 6(3):5013-5028, June 2019 (article)

Abstract
The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.

ics

PDF arXiv DOI [BibTex]

PDF arXiv DOI [BibTex]


no image
First-Order Adversarial Vulnerability of Neural Networks and Input Dimension

Simon-Gabriel, C., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.

Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models

Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.

In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 2931-2940, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (inproceedings)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl s ban outdoors 1   small
Explorations of Shape-Changing Haptic Interfaces for Blind and Sighted Pedestrian Navigation

Spiers, A., Kuchenbecker, K. J.

pages: 6, Workshop paper (6 pages) presented at the CHI 2019 Workshop on Hacking Blind Navigation, May 2019 (misc) Accepted

Abstract
Since the 1960s, technologists have worked to develop systems that facilitate independent navigation by vision-impaired (VI) pedestrians. These devices vary in terms of conveyed information and feedback modality. Unfortunately, many such prototypes never progress beyond laboratory testing. Conversely, smartphone-based navigation systems for sighted pedestrians have grown in robustness and capabilities, to the point of now being ubiquitous. How can we leverage the success of sighted navigation technology, which is driven by a larger global market, as a way to progress VI navigation systems? We believe one possibility is to make common devices that benefit both VI and sighted individuals, by providing information in a way that does not distract either user from their tasks or environment. To this end we have developed physical interfaces that eschew visual, audio or vibratory feedback, instead relying on the natural human ability to perceive the shape of a handheld object.

hi

[BibTex]

[BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser awesome v2
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Meta learning variational inference for prediction

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.

7th International Conference on Learning Representations (ICLR), May 2019 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Thumb xl robot
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning

Lutter, M., Ritter, C., Peters, J.

7th International Conference on Learning Representations (ICLR), May 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
DeepOBS: A Deep Learning Optimizer Benchmark Suite

Schneider, F., Balles, L., Hennig, P.

7th International Conference on Learning Representations (ICLR), May 2019 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


no image
Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments

Miladinović*, D., Gondal*, M. W., Schölkopf, B., Buhmann, J. M., Bauer, S.

Deep Generative Models for Highly Structured Data Workshop at ICLR, May 2019, *equal contribution (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
SOM-VAE: Interpretable Discrete Representation Learning on Time Series

Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.

7th International Conference on Learning Representations (ICLR), May 2019 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]