Header logo is


2017


Robotic Motion Learning Framework to Promote Social Engagement
Robotic Motion Learning Framework to Promote Social Engagement

Burns, R.

The George Washington University, August 2017 (mastersthesis)

Abstract
This paper discusses a novel framework designed to increase human-robot interaction through robotic imitation of the user's gestures. The set up consists of a humanoid robotic agent that socializes with and play games with the user. For the experimental group, the robot also imitates one of the user's novel gestures during a play session. We hypothesize that the robot's use of imitation will increase the user's openness towards engaging with the robot. Preliminary results from a pilot study of 12 subjects are promising in that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts. These results point to an increased user interest in engagement fueled by personalized imitation during interaction.

hi

link (url) [BibTex]

2017


link (url) [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

Project Page [BibTex]

Project Page [BibTex]

2012


Estimation of MIMO Closed-Loop Poles using Transfer Function Data
Estimation of MIMO Closed-Loop Poles using Transfer Function Data

Vardar, Y.

Eindhoven University of Technology, the Netherlands, 2012 (mastersthesis)

Abstract
For the development of high-tech systems such as lithographic positioning systems, throughput and accuracy are the main requirements. Nowadays, the trend to reach demanded accuracy and throughput levels is designing lightweight and consequently more flexible systems. To control these systems with a more effective and less conservative way, control design should go beyond the traditional rigid control and cope with the flexibilities that limit achievable bandwidth and performance. Therefore, conventional loop shaping methods are not sufficient to reach the performance criterions. Since obtaining an accurate parametric model is very complex and time-consuming for these high-tech systems, using well-developed model-based controller synthesis methods is also not a superior option. To achieve desired performance criterions, one solution can be implemented is reducing the gap between model-based and data-based control synthesis methods. In previous research, a method was developed to define the dynamic behavior of the system without a need for a parametric model. By this method transfer function data (TFD), which provides the information on the whole s-plane can be obtained from frequency response data (FRD) of the system. This innovation was a very important step to use data-based techniques for model-based controller synthesis methods. In this thesis firstly the standard technique to obtain TFD defined in [2] is extended. This standard technique to obtain TFD is not compatible with systems with pure integrators. To extend the methodology also for those systems, two techniques, which are altering the contour and filtering the system, are proposed. Then, the accuracy of TFD is investigated in detail. It is shown that the accuracy of TFD depends on the quality of FRD obtained and the computation techniques used to calculate TFD. Then, a technique which enables to determine the closed-loop poles of a MIMO system using TFD is discussed. The validity of the technique is proven with the help of complex function theory and calculus. Also, the factors that prevent determination of the closed-loop poles are discussed. In addition, it is observed that the accuracy of the closed-loop determination method depends on the quality of obtained TFD and the computation techniques. The proposed theory to obtain TFD and determination of closed-loop poles is validated with experiments conducted to a prototype lightweight system. Also, using experimental frequency response data of NXT-A7 test rig, the success of the proposed methodology is validated also for complex systems. Through these experimental results, it can be concluded that this new technique could be very advantageous in terms of ease of use and accuracy to determine the closed-loop poles of a MIMO lightly damped system.

hi

[BibTex]

2012


[BibTex]

2009


Synchronized Oriented Mutations Algorithm for Training Neural Controllers
Synchronized Oriented Mutations Algorithm for Training Neural Controllers

Berenz, V., Suzuki, K.

In Advances in Neuro-Information Processing: 15th International Conference, ICONIP 2008, Auckland, New Zealand, November 25-28, 2008, Revised Selected Papers, Part II, pages: 244-251, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009 (inbook)

am

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]


Integration of Visual Cues for Robotic Grasping
Integration of Visual Cues for Robotic Grasping

Bergström, N., Bohg, J., Kragic, D.

In Computer Vision Systems, 5815, pages: 245-254, Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009 (incollection)

Abstract
In this paper, we propose a method that generates grasping actions for novel objects based on visual input from a stereo camera. We are integrating two methods that are advantageous either in predicting how to grasp an object or where to apply a grasp. The first one reconstructs a wire frame object model through curve matching. Elementary grasping actions can be associated to parts of this model. The second method predicts grasping points in a 2D contour image of an object. By integrating the information from the two approaches, we can generate a sparse set of full grasp configurations that are of a good quality. We demonstrate our approach integrated in a vision system for complex shaped objects as well as in cluttered scenes.

am

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


no image
Bayesian Methods for Autonomous Learning Systems (Phd Thesis)

Ting, J.

Department of Computer Science, University of Southern California, Los Angeles, CA, 2009, clmc (phdthesis)

am

PDF [BibTex]

PDF [BibTex]

2008


no image
Measurement-Based Modeling for Haptic Rendering

Okamura, A. M., Kuchenbecker, K. J., Mahvash, M.

In Haptic Rendering: Algorithms and Applications, pages: 443-467, 21, A. K. Peters, May 2008 (incollection)

hi

[BibTex]

2008


[BibTex]


no image
Adaptive stair-climbing behaviour with a hybrid legged-wheeled robot

Eich, M., Grimminger, F., Kirchner, F.

In Advances In Mobile Robotics, pages: 768-775, World Scientific, August 2008 (incollection)

am

DOI [BibTex]

DOI [BibTex]

2002


no image
Learning robot control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 983-987, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on learning control in robots.

am

link (url) [BibTex]

2002


link (url) [BibTex]


no image
Arm and hand movement control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 110-113, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on computational and biological research on arm and hand control.

am

link (url) [BibTex]

link (url) [BibTex]

1999


no image
Nonparametric regression for learning nonlinear transformations

Schaal, S.

In Prerational Intelligence in Strategies, High-Level Processes and Collective Behavior, 2, pages: 595-621, (Editors: Ritter, H.;Cruse, H.;Dean, J.), Kluwer Academic Publishers, 1999, clmc (inbook)

Abstract
Information processing in animals and artificial movement systems consists of a series of transformations that map sensory signals to intermediate representations, and finally to motor commands. Given the physical and neuroanatomical differences between individuals and the need for plasticity during development, it is highly likely that such transformations are learned rather than pre-programmed by evolution. Such self-organizing processes, capable of discovering nonlinear dependencies between different groups of signals, are one essential part of prerational intelligence. While neural network algorithms seem to be the natural choice when searching for solutions for learning transformations, this paper will take a more careful look at which types of neural networks are actually suited for the requirements of an autonomous learning system. The approach that we will pursue is guided by recent developments in learning theory that have linked neural network learning to well established statistical theories. In particular, this new statistical understanding has given rise to the development of neural network systems that are directly based on statistical methods. One family of such methods stems from nonparametric regression. This paper will compare nonparametric learning with the more widely used parametric counterparts in a non technical fashion, and investigate how these two families differ in their properties and their applicabilities. We will argue that nonparametric neural networks offer a set of characteristics that make them a very promising candidate for on-line learning in autonomous system.

am

link (url) [BibTex]

1999


link (url) [BibTex]

1996


no image
From isolation to cooperation: An alternative of a system of experts

Schaal, S., Atkeson, C. G.

In Advances in Neural Information Processing Systems 8, pages: 605-611, (Editors: Touretzky, D. S.;Mozer, M. C.;Hasselmo, M. E.), MIT Press, Cambridge, MA, 1996, clmc (inbook)

Abstract
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to adjust the size and shape of the receptive field in which its predictions are valid, and also to adjust its bias on the importance of individual input dimensions. The size and shape adjustment corresponds to finding a local distance metric, while the bias adjustment accomplishes local dimensionality reduction. We derive asymptotic results for our method. In a variety of simulations we demonstrate the properties of the algorithm with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning. 

am

link (url) [BibTex]

1996


link (url) [BibTex]