Header logo is


2014


no image
Smart@load? Modeling interruption while using a Smartphone-app in alternating workload conditions

Wirzberger, M.

TU Berlin, 2014 (mastersthesis)

Abstract
Based on a time course model of interruption and resumption, the current thesis aims to inspect cognitive processes after being interrupted by product advertisements while performing a shopping task with a smartphone application. In doing so, different levels of mental workload, which are assumed to influence human performance as well as resumption strategy choice in this context, are taken into account. Within the applied research approach, cognitive modeling in the framework of the cognitive architecture ACT-R is combined with the development of a corresponding experimental design. The derived model predictions are validated with a 2x3-factorial design that includes repeated measures upon the second factor, and consists of 62 human participants. In detail, the influence of mental workload (high vs. low) and interruption (no vs. low vs. high) on various aspects of task-related performance and the applied resumption strategy is assessed. While the inspected performance parameters and resumption strategy choice usually point towards the expected direction for the model data, a converse pattern for the human data shows up in most cases. Comparing model and human data for each level of workload displays rather mixed results that are discussed afterwards. An outline of potential expansions and toeholds for future research within and beyond the mobile sector forms the completion of the thesis.

re

DOI [BibTex]


no image
Schalten der Polarität magnetischer Vortexkerne durch eine Zwei-Frequenzen Anregung und mittels direkter Einkopplung eines Stroms

Sproll, M.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), Stuttgart, 2014 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Vortex-Kern-Korrelation in gekoppelten Systemen

Jüllig, P.

Universität Stuttgart, Stuttgart, 2014 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Realization of a new Magnetic Scanning X-ray Microscope and Investigation of Landau Structures under Pulsed Field Excitation

Weigand, M.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2014 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Nanoporous Materials for Hydrogen Storage and H2/D2 Isotope Separation

Oh, H.

Universität Stuttgart, Stuttgart, 2014 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]

2013


no image
Determination of an Analysis Procedure for FEM-Based Fatigue Calculations

Serhat, G.

Technical University of Munich, December 2013 (mastersthesis)

hi

[BibTex]

2013


[BibTex]


Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms
Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms

Geiger, A.

Karlsruhe Institute of Technology, Karlsruhe Institute of Technology, April 2013 (phdthesis)

Abstract
Visual 3D scene understanding is an important component in autonomous driving and robot navigation. Intelligent vehicles for example often base their decisions on observations obtained from video cameras as they are cheap and easy to employ. Inner-city intersections represent an interesting but also very challenging scenario in this context: The road layout may be very complex and observations are often noisy or even missing due to heavy occlusions. While Highway navigation and autonomous driving on simple and annotated intersections have already been demonstrated successfully, understanding and navigating general inner-city crossings with little prior knowledge remains an unsolved problem. This thesis is a contribution to understanding multi-object traffic scenes from video sequences. All data is provided by a camera system which is mounted on top of the autonomous driving platform AnnieWAY. The proposed probabilistic generative model reasons jointly about the 3D scene layout as well as the 3D location and orientation of objects in the scene. In particular, the scene topology, geometry as well as traffic activities are inferred from short video sequences. The model takes advantage of monocular information in the form of vehicle tracklets, vanishing lines and semantic labels. Additionally, the benefit of stereo features such as 3D scene flow and occupancy grids is investigated. Motivated by the impressive driving capabilities of humans, no further information such as GPS, lidar, radar or map knowledge is required. Experiments conducted on 113 representative intersection sequences show that the developed approach successfully infers the correct layout in a variety of difficult scenarios. To evaluate the importance of each feature cue, experiments with different feature combinations are conducted. Additionally, the proposed method is shown to improve object detection and object orientation estimation performance.

avg ps

pdf [BibTex]

pdf [BibTex]


no image
Quantum kinetic theory for demagnetization after femtosecond laser pulses

Teeny, N.

Universität Stuttgart, Stuttgart, 2013 (mastersthesis)

mms

[BibTex]

[BibTex]