Header logo is


2017


Robotic Motion Learning Framework to Promote Social Engagement
Robotic Motion Learning Framework to Promote Social Engagement

Burns, R.

The George Washington University, August 2017 (mastersthesis)

Abstract
This paper discusses a novel framework designed to increase human-robot interaction through robotic imitation of the user's gestures. The set up consists of a humanoid robotic agent that socializes with and play games with the user. For the experimental group, the robot also imitates one of the user's novel gestures during a play session. We hypothesize that the robot's use of imitation will increase the user's openness towards engaging with the robot. Preliminary results from a pilot study of 12 subjects are promising in that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts. These results point to an increased user interest in engagement fueled by personalized imitation during interaction.

hi

link (url) [BibTex]

2017


link (url) [BibTex]


Evaluation of the passive dynamics of compliant legs with inertia
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2014


no image
Smart@load? Modeling interruption while using a Smartphone-app in alternating workload conditions

Wirzberger, M.

TU Berlin, 2014 (mastersthesis)

Abstract
Based on a time course model of interruption and resumption, the current thesis aims to inspect cognitive processes after being interrupted by product advertisements while performing a shopping task with a smartphone application. In doing so, different levels of mental workload, which are assumed to influence human performance as well as resumption strategy choice in this context, are taken into account. Within the applied research approach, cognitive modeling in the framework of the cognitive architecture ACT-R is combined with the development of a corresponding experimental design. The derived model predictions are validated with a 2x3-factorial design that includes repeated measures upon the second factor, and consists of 62 human participants. In detail, the influence of mental workload (high vs. low) and interruption (no vs. low vs. high) on various aspects of task-related performance and the applied resumption strategy is assessed. While the inspected performance parameters and resumption strategy choice usually point towards the expected direction for the model data, a converse pattern for the human data shows up in most cases. Comparing model and human data for each level of workload displays rather mixed results that are discussed afterwards. An outline of potential expansions and toeholds for future research within and beyond the mobile sector forms the completion of the thesis.

re

DOI [BibTex]


no image
Schalten der Polarität magnetischer Vortexkerne durch eine Zwei-Frequenzen Anregung und mittels direkter Einkopplung eines Stroms

Sproll, M.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), Stuttgart, 2014 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Vortex-Kern-Korrelation in gekoppelten Systemen

Jüllig, P.

Universität Stuttgart, Stuttgart, 2014 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Realization of a new Magnetic Scanning X-ray Microscope and Investigation of Landau Structures under Pulsed Field Excitation

Weigand, M.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2014 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Nanoporous Materials for Hydrogen Storage and H2/D2 Isotope Separation

Oh, H.

Universität Stuttgart, Stuttgart, 2014 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]

2013


no image
Determination of an Analysis Procedure for FEM-Based Fatigue Calculations

Serhat, G.

Technical University of Munich, December 2013 (mastersthesis)

hi

[BibTex]

2013


[BibTex]


no image
Quantum kinetic theory for demagnetization after femtosecond laser pulses

Teeny, N.

Universität Stuttgart, Stuttgart, 2013 (mastersthesis)

mms

[BibTex]

[BibTex]