Header logo is


2018


Softness, Warmth, and Responsiveness Improve Robot Hugs
Softness, Warmth, and Responsiveness Improve Robot Hugs

Block, A. E., Kuchenbecker, K. J.

International Journal of Social Robotics, 11(1):49-64, October 2018 (article)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, roboticists are naturally interested in having robots one day hug humans as seamlessly as humans hug other humans. This project's purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a soft, warm, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty relatively young and rather technical participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot characteristics (single factor, three levels) and nine randomly ordered trials with low, medium, and high hug pressure and duration (two factors, three levels each). Analysis of the results showed that people significantly prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end. Taking part in the experiment also significantly increased positive user opinions of robots and robot use.

hi

link (url) DOI Project Page [BibTex]

2018


link (url) DOI Project Page [BibTex]


no image
Complexity, Rate, and Scale in Sliding Friction Dynamics Between a Finger and Textured Surface

Khojasteh, B., Janko, M., Visell, Y.

Nature Scientific Reports, 8(13710), September 2018 (article)

Abstract
Sliding friction between the skin and a touched surface is highly complex, but lies at the heart of our ability to discriminate surface texture through touch. Prior research has elucidated neural mechanisms of tactile texture perception, but our understanding of the nonlinear dynamics of frictional sliding between the finger and textured surfaces, with which the neural signals that encode texture originate, is incomplete. To address this, we compared measurements from human fingertips sliding against textured counter surfaces with predictions of numerical simulations of a model finger that resembled a real finger, with similar geometry, tissue heterogeneity, hyperelasticity, and interfacial adhesion. Modeled and measured forces exhibited similar complex, nonlinear sliding friction dynamics, force fluctuations, and prominent regularities related to the surface geometry. We comparatively analysed measured and simulated forces patterns in matched conditions using linear and nonlinear methods, including recurrence analysis. The model had greatest predictive power for faster sliding and for surface textures with length scales greater than about one millimeter. This could be attributed to the the tendency of sliding at slower speeds, or on finer surfaces, to complexly engage fine features of skin or surface, such as fingerprints or surface asperities. The results elucidate the dynamical forces felt during tactile exploration and highlight the challenges involved in the biological perception of surface texture via touch.

hi

DOI [BibTex]

DOI [BibTex]


no image
Design of curved composite panels for optimal dynamic response using lamination parameters

Serhat, G., Basdogan, I.

Composites Part B: Engineering, 147, pages: 135–146, August 2018 (article)

Abstract
In this paper, dynamic response of composite panels is investigated using lamination parameters as design variables. Finite element analyses are performed to observe the individual and combined effects of different panel aspect ratios, curvatures and boundary conditions on the dynamic responses. Fundamental frequency contours for curved panels are obtained in lamination parameters domain and optimal points yielding maximum values are found. Subsequently, forced dynamic analyses are carried out to calculate equivalent radiated power (ERP) for the panels under harmonic pressure excitation. ERP contours at the maximum fundamental frequency are presented. Optimal lamination parameters providing minimum ERP are determined for different excitation frequencies and their effective frequency bands are shown. The relationship between the designs optimized for maximum fundamental frequency and minimum ERP responses is investigated to study the effectiveness of the frequency maximization technique. The results demonstrate the potential of using lamination parameters technique in the design of curved composite panels for optimal dynamic response and provide valuable insight on the effect of various design parameters.

hi

DOI [BibTex]

DOI [BibTex]


no image
A Robust Soft Lens for Tunable Camera Application Using Dielectric Elastomer Actuators

Nam, S., Yun, S., Yoon, J. W., Park, S., Park, S. K., Mun, S., Park, B., Kyung, K.

Soft robotics, Mary Ann Liebert, Inc., August 2018 (article)

Abstract
Developing tunable lenses, an expansion-based mechanism for dynamic focus adjustment can provide a larger focal length tuning range than a contraction-based mechanism. Here, we develop an expansion-tunable soft lens module using a disk-type dielectric elastomer actuator (DEA) that creates axially symmetric pulling forces on a soft lens. Adopted from a biological accommodation mechanism in human eyes, a soft lens at the annular center of a disk-type DEA pair is efficiently stretched to change the focal length in a highly reliable manner. A soft lens with a diameter of 3mm shows a 65.7% change in the focal length (14.3–23.7mm) under a dynamic driving voltage signal control. We confirm a quadratic relation between lens expansion and focal length that leads to large focal length tunability obtainable in the proposed approach. The fabricated tunable lens module can be used for soft, lightweight, and compact vision components in robots, drones, vehicles, and so on.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Task-Driven PCA-Based Design Optimization of Wearable Cutaneous Devices

Pacchierotti, C., Young, E. M., Kuchenbecker, K. J.

IEEE Robotics and Automation Letters, 3(3):2214-2221, July 2018, Presented at ICRA 2018 (article)

Abstract
Small size and low weight are critical requirements for wearable and portable haptic interfaces, making it essential to work toward the optimization of their sensing and actuation systems. This paper presents a new approach for task-driven design optimization of fingertip cutaneous haptic devices. Given one (or more) target tactile interactions to render and a cutaneous device to optimize, we evaluate the minimum number and best configuration of the device’s actuators to minimize the estimated haptic rendering error. First, we calculate the motion needed for the original cutaneous device to render the considered target interaction. Then, we run a principal component analysis (PCA) to search for possible couplings between the original motor inputs, looking also for the best way to reconfigure them. If some couplings exist, we can re-design our cutaneous device with fewer motors, optimally configured to render the target tactile sensation. The proposed approach is quite general and can be applied to different tactile sensors and cutaneous devices. We validated it using a BioTac tactile sensor and custom plate-based 3-DoF and 6-DoF fingertip cutaneous devices, considering six representative target tactile interactions. The algorithm was able to find couplings between each device’s motor inputs, proving it to be a viable approach to optimize the design of wearable and portable cutaneous devices. Finally, we present two examples of optimized designs for our 3-DoF fingertip cutaneous device.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn {IMU}s
Teaching a Robot Bimanual Hand-Clapping Games via Wrist-Worn IMUs

Fitter, N. T., Kuchenbecker, K. J.

Frontiers in Robotics and Artificial Intelligence, 5(85), July 2018 (article)

Abstract
Colleagues often shake hands in greeting, friends connect through high fives, and children around the world rejoice in hand-clapping games. As robots become more common in everyday human life, they will have the opportunity to join in these social-physical interactions, but few current robots are intended to touch people in friendly ways. This article describes how we enabled a Baxter Research Robot to both teach and learn bimanual hand-clapping games with a human partner. Our system monitors the user's motions via a pair of inertial measurement units (IMUs) worn on the wrists. We recorded a labeled library of 10 common hand-clapping movements from 10 participants; this dataset was used to train an SVM classifier to automatically identify hand-clapping motions from previously unseen participants with a test-set classification accuracy of 97.0%. Baxter uses these sensors and this classifier to quickly identify the motions of its human gameplay partner, so that it can join in hand-clapping games. This system was evaluated by N = 24 naïve users in an experiment that involved learning sequences of eight motions from Baxter, teaching Baxter eight-motion game patterns, and completing a free interaction period. The motion classification accuracy in this less structured setting was 85.9%, primarily due to unexpected variations in motion timing. The quantitative task performance results and qualitative participant survey responses showed that learning games from Baxter was significantly easier than teaching games to Baxter, and that the teaching role caused users to consider more teamwork aspects of the gameplay. Over the course of the experiment, people felt more understood by Baxter and became more willing to follow the example of the robot. Users felt uniformly safe interacting with Baxter, and they expressed positive opinions of Baxter and reported fun interacting with the robot. Taken together, the results indicate that this robot achieved credible social-physical interaction with humans and that its ability to both lead and follow systematically changed the human partner's experience.

hi

DOI [BibTex]

DOI [BibTex]


Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs
Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs

Sproewitz, A., Tuleu, A., Ajallooeian, M., Vespignani, M., Moeckel, R., Eckert, P., D’Haene, M., Degrave, J., Nordmann, A., Schrauwen, B., Steil, J., Ijspeert, A. J.

Frontiers in Robotics and AI, 5(67), June 2018, arXiv: 1803.06259 (article)

Abstract
We present Oncilla robot, a novel mobile, quadruped legged locomotion machine. This large-cat sized, 5.1 robot is one of a kind of a recent, bioinspired legged robot class designed with the capability of model-free locomotion control. Animal legged locomotion in rough terrain is clearly shaped by sensor feedback systems. Results with Oncilla robot show that agile and versatile locomotion is possible without sensory signals to some extend, and tracking becomes robust when feedback control is added (Ajaoolleian 2015). By incorporating mechanical and control blueprints inspired from animals, and by observing the resulting robot locomotion characteristics, we aim to understand the contribution of individual components. Legged robots have a wide mechanical and control design parameter space, and a unique potential as research tools to investigate principles of biomechanics and legged locomotion control. But the hardware and controller design can be a steep initial hurdle for academic research. To facilitate the easy start and development of legged robots, Oncilla-robot's blueprints are available through open-source. [...]

dlg

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Automatically Rating Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 32(4):1840-1857, April 2018 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Electroelastic modeling of thin-laminated composite plates with surface-bonded piezo-patches using Rayleigh–Ritz method

Gozum, M. M., Aghakhani, A., Serhat, G., Basdogan, I.

Journal of Intelligent Material Systems and Structures, 29(10):2192–2205, March 2018 (article)

Abstract
Laminated composite panels are extensively used in various engineering applications. Piezoelectric transducers can be integrated into such composite structures for a variety of vibration control and energy harvesting applications. Analyzing the structural dynamics of such electromechanical systems requires precise modeling tools which properly consider the coupling between the piezoelectric elements and the laminates. Although previous analytical models in the literature cover vibration analysis of laminated composite plates with fully covered piezoelectric layers, they do not provide a formulation for modeling the piezoelectric patches that partially cover the plate surface. In this study, a methodology for vibration analysis of laminated composite plates with surface-bonded piezo-patches is developed. Rayleigh–Ritz method is used for solving the modal analysis and obtaining the frequency response functions. The developed model includes mass and stiffness contribution of the piezo-patches as well as the two-way electromechanical coupling effect. Moreover, an accelerated method is developed for reducing the computation time of the modal analysis solution. For validations, system-level finite element simulations are performed in ANSYS software. The results show that the developed analytical model can be utilized for accurate and efficient analysis and design of laminated composite plates with surface-bonded piezo-patches.

pi hi

DOI [BibTex]

DOI [BibTex]


Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices
Electro-Active Polymer Based Soft Tactile Interface for Wearable Devices

Mun, S., Yun, S., Nam, S., Park, S. K., Park, S., Park, B. J., Lim, J. M., Kyung, K. U.

IEEE Transactions on Haptics, 11(1):15-21, Febuary 2018 (article)

Abstract
This paper reports soft actuator based tactile stimulation interfaces applicable to wearable devices. The soft actuator is prepared by multi-layered accumulation of thin electro-active polymer (EAP) films. The multi-layered actuator is designed to produce electrically-induced convex protrusive deformation, which can be dynamically programmable for wide range of tactile stimuli. The maximum vertical protrusion is 650 μm and the output force is up to 255 mN. The soft actuators are embedded into the fingertip part of a glove and front part of a forearm band, respectively. We have conducted two kinds of experiments with 15 subjects. Perceived magnitudes of actuator's protrusion and vibrotactile intensity were measured with frequency of 1 Hz and 191 Hz, respectively. Analysis of the user tests shows participants perceive variation of protrusion height at the finger pad and modulation of vibration intensity through the proposed soft actuator based tactile interface.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Robotic Motion Learning Framework to Promote Social Engagement
Robotic Motion Learning Framework to Promote Social Engagement

Burns, R., Jeon, M., Park, C. H.

Applied Sciences, 8(2):241, Febuary 2018, Special Issue "Social Robotics" (article)

Abstract
Imitation is a powerful component of communication between people, and it poses an important implication in improving the quality of interaction in the field of human–robot interaction (HRI). This paper discusses a novel framework designed to improve human–robot interaction through robotic imitation of a participant’s gestures. In our experiment, a humanoid robotic agent socializes with and plays games with a participant. For the experimental group, the robot additionally imitates one of the participant’s novel gestures during a play session. We hypothesize that the robot’s use of imitation will increase the participant’s openness towards engaging with the robot. Experimental results from a user study of 12 subjects show that post-imitation, experimental subjects displayed a more positive emotional state, had higher instances of mood contagion towards the robot, and interpreted the robot to have a higher level of autonomy than their control group counterparts did. These results point to an increased participant interest in engagement fueled by personalized imitation during interaction.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Transmission x-ray microscopy at low temperatures: Irregular supercurrent flow at small length scales

Simmendinger, J., Ruoss, S., Stahl, C., Weigand, M., Gräfe, J., Schütz, G., Albrecht, J.

{Physical Review B}, 97(13), American Physical Society, Woodbury, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases

Ambron, E., Miller, A., Kuchenbecker, K. J., Buxbaum, L. J., Coslett, H. B.

Frontiers in Neurology, 9(67):1-7, 2018 (article)

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Assessment methodology of promising porous materials for near ambient temperature hydrogen storage applications

Minuto, F. D., Balderas-Xicohténcatl, R., Policicchio, A., Hirscher, M., Agostino, R. G.

{International Journal of Hydrogen Energy}, 43(31):14550-14556, Elsevier, Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Incorporation of Terbium into a Microalga Leads to Magnetotactic Swimmers

Santomauro, G., Singh, A., Park, B. W., Mohammadrahimi, M., Erkoc, P., Goering, E., Schütz, G., Sitti, M., Bill, J.

Advanced Biosystems, 2(12):1800039, 2018 (article)

mms pi

[BibTex]

[BibTex]


no image
Thermodynamics, kinetics and selectivity of H2 and D2 on zeolite 5A below 77K

Xiong, R., Balderas-Xicohténcatl, R., Zhang, L., Li, P., Yao, Y., Sang, G., Chen, C., Tang, T., Luo, D., Hirscher, M.

{Microporous and Mesoporous Materials}, 264, pages: 22-27, Elsevier, Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Volumetric hydrogen storage capacity in metal-organic frameworks

Balderas-Xicohténcatl, R., Schlichtenmayer, M., Hirscher, M.

{Energy Technology}, 6(3):578-582, Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
3D nanoprinted plastic kinoform x-ray optics

Sanli, U. T., Ceylan, H., Bykova, I., Weigand, M., Sitti, M., Schütz, G., Keskinbora, K.

{Advanced Materials}, 30(36), Wiley-VCH, Weinheim, 2018 (article)

mms pi

DOI [BibTex]

DOI [BibTex]


no image
High volumetric hydrogen storage capacity using interpenetrated metal-organic frameworks

Balderas-Xicohténcatl, R., Schmieder, P., Denysenko, D., Volkmer, D., Hirscher, M.

{Energy Technology}, 6(3):510-512, Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


Tactile Masking by Electrovibration
Tactile Masking by Electrovibration

Vardar, Y., Güçlü, B., Basdogan, C.

IEEE Transactions on Haptics, 11(4):623-635, 2018 (article)

Abstract
Future touch screen applications will include multiple tactile stimuli displayed simultaneously or consecutively to single finger or multiple fingers. These applications should be designed by considering human tactile masking mechanism since it is known that presenting one stimulus may interfere with the perception of the other. In this study, we investigate the effect of masking on tactile perception of electrovibration displayed on touch screens. Through conducting psychophysical experiments with nine subjects, we measured the masked thresholds of sinusoidal electrovibration bursts (125 Hz) under two masking conditions: simultaneous and pedestal. The masking stimuli were noise bursts, applied at five different sensation levels varying from 2 to 22 dB SL, also presented by electrovibration. For each subject, the detection thresholds were elevated as linear functions of masking levels for both masking types. We observed that the masking effectiveness was larger with pedestal masking than simultaneous masking. Moreover, in order to investigate the effect of tactile masking on our haptic perception of edge sharpness, we compared the perceived sharpness of edges separating two textured regions displayed with and without various masking stimuli. Our results suggest that sharpness perception depends on the local contrast between background and foreground stimuli, which varies as a function of masking amplitude and activation levels of frequency-dependent psychophysical channels.

hi

vardar_toh2018 DOI [BibTex]

vardar_toh2018 DOI [BibTex]


no image
Thick permalloy films for the imaging of spin texture dynamics in perpendicularly magnetized systems

Finizio, S., Wintz, S., Bracher, D., Kirk, E., Semisalova, A. S., Förster, J., Zeissler, K., We\ssels, T., Weigand, M., Lenz, K., Kleibert, A., Raabe, J.

{Physical Review B}, 98(10), American Physical Society, Woodbury, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Dynamic Janus metasurfaces in the visible spectral region

Yu, P., Li, J., Zhang, S., Jin, Z., Schütz, G., Qiu, C., Hirscher, M., Liu, N.

{Nano Letters}, 18(7):4584-4589, American Chemical Society, Washington, DC, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Review of ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter

Fähnle, M., Haag, M., Illg, C., Müller, B. Y., Weng, W., Tsatsoulis, T., Huang, H., Briones Paz, J. Z., Teeny, N., Zhang, L., Kuhn, T.

{American Journal of Modern Physics}, 7(2):68-74, Science Publishing Group, New York, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of Zhang-Li torque expansion of magnetic droplet solitons

Chung, S., Tuan Le, Q., Ahlberg, M., Awad, A. A., Weigand, M., Bykova, I., Khymyn, R., Dvornik, M., Mazraati, H., Houshang, A., Jiang, S., Nguyen, T. N. A., Goering, E., Schütz, G., Gräfe, J., \AAkerman, J.

{Physical Review Letters}, 120(21), American Physical Society, Woodbury, N.Y., 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Current-induced skyrmion generation through morphological thermal transitions in chiral ferromagnetic heterostructures

Lemesh, I., Litzius, K., Böttcher, M., Bassirian, P., Kerber, N., Heinze, D., Zázvorka, J., Büttner, F., Caretta, L., Mann, M., Weigand, M., Finizio, S., Raabe, J., Im, M., Stoll, H., Schütz, G., Dupé, B., Kläui, M., Beach, G. S. D.

{Advanced Materials}, 30(49), Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
3d nanofabrication of high-resolution multilayer Fresnel zone plates

Sanli, U. T., Jiao, C., Baluktsian, M., Grévent, C., Hahn, K., Wang, Y., Srot, V., Richter, G., Bykova, I., Weigand, M., Schütz, G., Keskinbora, K.

{Advanced Science}, 5(9), Wiley-VCH, Weinheim, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Photocatalytic CO2 reduction by Cr-substituted Ba2(In2-xCrx)O5\mbox⋅(H2O)δ(0.04 ≤x ≤0.60)

Yoon, S., Gaul, M., Sharma, S., Son, K., Hagemann, H., Ziegenbalg, D., Schwingenschlogl, U., Widenmeyer, M., Weidenkaff, A.

{Solid State Sciences}, 78, pages: 22-29, Elsevier Masson SAS, Paris, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Correction of axial position uncertainty and systematic detector errors in ptychographic diffraction imaging

Loetgering, L., Rose, M., Keskinbora, K., Baluktsian, M., Dogan, G., Sanli, U., Bykova, I., Weigand, M., Schütz, G., Wilhein, T.

{Optical Engineering}, 57(8), The Society, Redondo Beach, Calif., 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of surface oxides on hydrogen sorption kinetics in titanium thin films

Hadjixenophontos, E., Michalek, L., Roussel, M., Hirscher, M., Schmitz, G.

{Applied Surface Science}, 441, pages: 324-330, Elsevier B.V., Amsterdam, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferromagnetism in nitrogen and fluorine substituted BaTiO3

Yoon, S., Son, K., Ebbinghaus, S. G., Widenmeyer, M., Weidenkaff, A.

{Journal of Alloys and Compounds}, 749, pages: 628-633, Elsevier B.V., Lausanne, Switzerland, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
New concepts for 3d optics in x-ray microscopy

Sanli, U., Ceylan, H., Jiao, C., Baluktsian, M., Grevent, C., Hahn, K., Wang, Y., Srot, V., Richter, G., Bykova, I., Weigand, M., Sitti, M., Schütz, G., Keskinbora, K.

{Microscopy and Microanalysis}, 24(Suppl 2):288-289, Cambridge University Press, New York, NY, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spin-wave interference in magnetic vortex stacks

Behncke, C., Adolff, C. F., Lenzing, N., Hänze, M., Schulte, B., Weigand, M., Schütz, G., Meier, G.

{Communications Physics}, 1, Nature Publishing Group, London, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

Keskinbora, K., Sanli, U. T., Baluktsian, M., Grévent, C., Weigand, M., Schütz, G.

{Beilstein Journal of Nanotechnology}, 9, pages: 2049-2056, Beilstein-Institut, Frankfurt am Main, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Deterministic creation and deletion of a single magnetic skyrmion observed by direct time-resolved X-ray microscopy

Woo, S., Song, K. M., Zhang, X., Ezawa, M., Zhou, Y., Liu, X., Weigand, M., Finizio, S., Raabe, J., Park, M.-C., Lee, K.-Y., Choi, J. W., Min, B.-C., Koo, H. C., Chang, J.

{Nature Electronics}, 1(5):288-296, Springer Nature, London, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic skyrmion as a nonlinear resistive element: A potential building block for reservoir computing

Prychynenko, D., Sitte, M., Litzius, K., Krüger, B., Bourianoff, G., Kläui, M., Sinova, J., Everschor-Sitte, K.

{Physical Review Applied}, 9(1), American Physical Society, College Park, Md. [u.a.], 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable geometrical frustration in magnoic vortex crystals

Behncke, C., Adolff, C. F., Wintz, S., Hänze, M., Schulte, B., Weigand, M., Finizio, S., Raabe, J., Meier, G.

{Scientific Reports}, 8, Nature Publishing Group, London, UK, 2018 (article)

mms

DOI [BibTex]

DOI [BibTex]

2014


no image
Haptic Robotization of Human Body via Data-Driven Vibrotactile Feedback

Kurihara, Y., Takei, S., Nakai, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

Entertainment Computing, 5(4):485-494, December 2014 (article)

hi

[BibTex]

2014


[BibTex]


no image
Modeling and Rendering Realistic Textures from Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 7(3):381-292, July 2014 (article)

hi

[BibTex]

[BibTex]


Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot
Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot

Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A. J.

{Robotics and Autonomous Systems}, 62(7):1016-1033, Elsevier, Amsterdam, 2014 (article)

Abstract
In this work we provide hands-on experience on designing and testing a self-reconfiguring modular robotic system, Roombots (RB), to be used among others for adaptive furniture. In the long term, we envision that RB can be used to create sets of furniture, such as stools, chairs and tables that can move in their environment and that change shape and functionality during the day. In this article, we present the first, incremental results towards that long term vision. We demonstrate locomotion and reconfiguration of single and metamodule RB over 3D surfaces, in a structured environment equipped with embedded connection ports. RB assemblies can move around in non-structured environments, by using rotational or wheel-like locomotion. We show a proof of concept for transferring a Roombots metamodule (two in-series coupled RB modules) from the non-structured environment back into the structured grid, by aligning the RB metamodule in an entrapment mechanism. Finally, we analyze the remaining challenges to master the full Roombots scenario, and discuss the impact on future Roombots hardware.

dlg

DOI [BibTex]

DOI [BibTex]


Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs

Spröwitz, A. T., Ajallooeian, M., Tuleu, A., Ijspeert, A. J.

Frontiers in Computational Neuroscience, 8(27):1-13, 2014 (article)

Abstract
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95\% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Efflorescence upon humidification? X-ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration

Pöhlker, C., Saturno, J., Krüger, M. L., Förster, J. D., Weigand, M., Wiedemann, K. T., Bechtel, M., Artaxo, P., Andreae, M. O.

{Geophysical Research Letters}, 41(10):3681-3689, American Geophysical Union, Washington, D.C., 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Investigation of cellular microstructure and enhanced coercivity in sputtered Sm2(CoCuFeZr)17 film

Bhatt, R., Bhatt, P., Schütz, G.

{Journal of Applied Physics}, 115(10), American Institute of Physics, New York, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Detecting magnetic flux distributions in superconductors with polarized x-rays

Stahl, C., Audehm, P., Gräfe, J., Ruoß, S., Weigand, M., Schmidt, M., Treiber, S., Bechtel, M., Goering, E., Schütz, G., Albrecht, J.

{Physical Review B}, 90(10), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Spatial degradation mapping and component-wise degradation tracking in polymer-fullerene blends

Pedersen, E. B. B., Tromholt, T., Madsen, M. V., Böttiger, A. P. L., Weigand, M., Krebs, F. C., Andreasen, J. W.

{Journal of Materials Chemistry C}, 2(26):5176-5182, Royal Society of Chemistry, Cambridge, UK, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Vortex core reversal due to spin wave interference

Bauer, H. G., Sproll, M., Back, C. H., Woltersdorf, G.

{Physical Review Letters}, 112, American Physical Society, Woodbury, N.Y., 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8

Magdysyuk, O. V., Adams, F., Liermann, H., Spanopoulos, I., Trikalitis, P. N., Hirscher, M., Morris, R. E., Duncan, M. J., McCormick, L. J., Dinnebier, R. E.

{Physical Chemistry Chemical Physics}, 16(43):23908-23914, Royal Society of Chemistry, Cambridge, England, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Unidirectional sub-100-ps magnetic vortex core reversal

Noske, M., Gangwar, A., Stoll, H., Kammerer, M., Sproll, M., Dieterle, G., Weigand, M., Fähnle, M., Woltersdorf, G., Back, C. H., Schütz, G.

{Physical Review B}, 90(10), American Physical Society, Woodbury, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Domain wall transformations and hopping in La0.7Sr0.3MnO3 nanostructures imaged with high resolution x-ray magnetic microscopy

Finizio, S., Foerster, M., Krüger, B., Vaz, C. A. F., Miyawaki, T., Mawass, M. A., Pena, L., Méchin, L., Hühn, S., Moshnyaga, V., Büttner, F., Bisig, A., Le Guyader, L., El Moussaoui, S., Valencia, S., Kronast, F., Eisebitt, S., Kläui, M.

{Journal of Physics: Condensed Matter}, 26(45), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable eigenmodes of coupled magnetic vortex oscillators

Hänze, M., Adolff, C. F., Weigand, M., Meier, G.

{Applied Physics Letters}, 104(18), American Institute of Physics, Melville, NY, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Domain wall pinning in ultra-narrow electromigrated break junctions

Reeve, R. M., Loescher, A., Mawass, M.-A., Hoffmann-Vogel, R., Kläui, M.

{Journal of Physics: Condensed Matter}, 26(47), IOP Publishing, Bristol, 2014 (article)

mms

DOI [BibTex]

DOI [BibTex]