Header logo is


2019


Thumb xl mode changes long exp
Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees

Baumann, D., Mager, F., Jacob, R., Thiele, L., Zimmerling, M., Trimpe, S.

ACM Transactions on Cyber-Physical Systems, 4(2):18, November 2019 (article)

ics

arXiv PDF DOI [BibTex]

2019


arXiv PDF DOI [BibTex]


Thumb xl motorized device
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI [BibTex]


Thumb xl trimpe2019resource image
Resource-aware IoT Control: Saving Communication through Predictive Triggering

Trimpe, S., Baumann, D.

IEEE Internet of Things Journal, 6(3):5013-5028, June 2019 (article)

Abstract
The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.

ics

PDF arXiv DOI [BibTex]

PDF arXiv DOI [BibTex]


Thumb xl journal iav
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 2019 (article) Accepted

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


Thumb xl systemillustration
Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives

Gumbsch, C., Butz, M. V., Martius, G.

IEEE Transactions on Cognitive and Developmental Systems, 2019 (article)

Abstract
Voluntary behavior of humans appears to be composed of small, elementary building blocks or behavioral primitives. While this modular organization seems crucial for the learning of complex motor skills and the flexible adaption of behavior to new circumstances, the problem of learning meaningful, compositional abstractions from sensorimotor experiences remains an open challenge. Here, we introduce a computational learning architecture, termed surprise-based behavioral modularization into event-predictive structures (SUBMODES), that explores behavior and identifies the underlying behavioral units completely from scratch. The SUBMODES architecture bootstraps sensorimotor exploration using a self-organizing neural controller. While exploring the behavioral capabilities of its own body, the system learns modular structures that predict the sensorimotor dynamics and generate the associated behavior. In line with recent theories of event perception, the system uses unexpected prediction error signals, i.e., surprise, to detect transitions between successive behavioral primitives. We show that, when applied to two robotic systems with completely different body kinematics, the system manages to learn a variety of complex behavioral primitives. Moreover, after initial self-exploration the system can use its learned predictive models progressively more effectively for invoking model predictive planning and goal-directed control in different tasks and environments.

al

arXiv PDF video link (url) DOI Project Page [BibTex]


no image
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration

Sun, H., Martius, G.

Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)

Abstract
Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot’s limb surface from internal deformation measured by only a few physical sensors. The general idea of this framework is to predict first the whole surface deformation pattern from the sparsely placed sensors and then to infer number, locations and force magnitudes of unknown contact points. We show how this can be done even if training data can only be obtained for single-contact points using transfer learning at the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors we obtain a high accuracy also for multiple-contact points. The method can be applied to arbitrarily shaped surfaces and physical sensor types, as long as training data can be obtained.

al

link (url) DOI [BibTex]

2017


no image
Evaluation of High-Fidelity Simulation as a Training Tool in Transoral Robotic Surgery

Bur, A. M., Gomez, E. D., Newman, J. G., Weinstein, G. S., Bert W. O’Malley, J., Rassekh, C. H., Kuchenbecker, K. J.

Laryngoscope, 127(12):2790-2795, December 2017 (article)

hi

DOI [BibTex]

2017


DOI [BibTex]


no image
Using Contact Forces and Robot Arm Accelerations to Automatically Rate Surgeon Skill at Peg Transfer

Brown, J. D., O’Brien, C. E., Leung, S. C., Dumon, K. R., Lee, D. I., Kuchenbecker, K. J.

IEEE Transactions on Biomedical Engineering, 64(9):2263-2275, September 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Ungrounded Haptic Augmented Reality System for Displaying Texture and Friction

Culbertson, H., Kuchenbecker, K. J.

IEEE/ASME Transactions on Mechatronics, 22(4):1839-1849, August 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Event-based State Estimation: An Emulation-based Approach

Trimpe, S.

IET Control Theory & Applications, 11(11):1684-1693, July 2017 (article)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor agents observe a dynamic process and sporadically transmit their measurements to estimator agents over a shared bus network. Local event-triggering protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. The event-based design is shown to emulate the performance of a centralised state observer design up to guaranteed bounds, but with reduced communication. The stability results for state estimation are extended to the distributed control system that results when the local estimates are used for feedback control. Results from numerical simulations and hardware experiments illustrate the effectiveness of the proposed approach in reducing network communication.

am ics

arXiv Supplementary material PDF DOI Project Page [BibTex]

arXiv Supplementary material PDF DOI Project Page [BibTex]


no image
Perception of Force and Stiffness in the Presence of Low-Frequency Haptic Noise

Gurari, N., Okamura, A. M., Kuchenbecker, K. J.

PLoS ONE, 12(6):e0178605, June 2017 (article)

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Evaluation of a Vibrotactile Simulator for Dental Caries Detection

Kuchenbecker, K. J., Parajon, R., Maggio, M. P.

Simulation in Healthcare, 12(3):148-156, June 2017 (article)

hi

DOI [BibTex]

DOI [BibTex]


no image
Importance of Matching Physical Friction, Hardness, and Texture in Creating Realistic Haptic Virtual Surfaces

Culbertson, H., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):63-74, January 2017 (article)

hi

[BibTex]


no image
Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task

Khurshid, R. P., Fitter, N. T., Fedalei, E. A., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 10(1):40-53, January 2017 (article)

hi

[BibTex]

[BibTex]


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]