Header logo is


2016


no image
An electro-active polymer based lens module for dynamically varying focal system

Yun, S., Park, S., Nam, S., Park, B., Park, S. K., Mun, S., Lim, J. M., Kyung, K.

Applied Physics Letters, 109(14):141908, October 2016 (article)

Abstract
We demonstrate a polymer-based active-lens module allowing a dynamic focus controllable optical system with a wide tunable range. The active-lens module is composed of parallelized two active- lenses with a convex and a concave shaped hemispherical lens structure, respectively. Under opera- tion with dynamic input voltage signals, each active-lens produces translational movement bi-directionally responding to a hybrid driving force that is a combination of an electro-active response of a thin dielectric elastomer membrane and an electro-static attraction force. Since the proposed active lens module widely modulates a gap-distance between lens-elements, an optical system based on the active-lens module provides widely-variable focusing for selective imaging of objects in arbitrary position.

hi

link (url) DOI [BibTex]

2016


link (url) DOI [BibTex]


no image
Wrinkle structures formed by formulating UV-crosslinkable liquid prepolymers

Park, S. K., Kwark, Y., Nam, S., Park, S., Park, B., Yun, S., Moon, J., Lee, J., Yu, B., Kyung, K.

Polymer, 99, pages: 447-452, September 2016 (article)

Abstract
Artificial wrinkles have recently been in the spotlight due to their potential use in high-tech applications. A spontaneously wrinkled film can be fabricated from UV-crosslinkable liquid prepolymers. Here, we controlled the wrinkle formation by simply formulating two UV-crosslinkable liquid prepolymers, tetraethylene glycol bis(4-ethenyl-2,3,5,6-tetrafluorophenyl) ether (TEGDSt) and tetraethylene glycol diacrylate (TEGDA). The wrinkles were formed from the TEGDSt/TEGDA formulated prepolymer layers containing up to 30 wt% of TEGDA. The wrinkle formation depended upon the rate of photo-crosslinking reaction of the formulated prepolymers. The first order apparent rate constant, kapp, was between ca. 5.7 × 10−3 and 12.2 × 10−3 s−1 for the wrinkle formation. The wrinkle structures were modulated within the kapp mainly due to variation in the extent of shrinkage of the formulated prepolymer layers with the content of TEGDA

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Objective assessment of robotic surgical skill using instrument contact vibrations

Gomez, E. D., Aggarwal, R., McMahan, W., Bark, K., Kuchenbecker, K. J.

Surgical Endoscopy, 30(4):1419-1431, 2016 (article)

hi

[BibTex]

[BibTex]


no image
Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

IEEE Transactions on Biomedical Engineering, 63(2):278-287, February 2016 (article)

hi

[BibTex]

[BibTex]


no image
Structure modulated electrostatic deformable mirror for focus and geometry control

Nam, S., Park, S., Yun, S., Park, B., Park, S. K., Kyung, K.

Optics Express, 24(1):55-66, OSA, January 2016 (article)

Abstract
We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Peripheral vs. central determinants of vibrotactile adaptation

Klöcker, A., Gueorguiev, D., Thonnard, J. L., Mouraux, A.

Journal of Neurophysiology, 115(2):685-691, 2016, PMID: 26581868 (article)

Abstract
Long-lasting mechanical vibrations applied to the skin induce a reversible decrease in the perception of vibration at the stimulated skin site. This phenomenon of vibrotactile adaptation has been studied extensively, yet there is still no clear consensus on the mechanisms leading to vibrotactile adaptation. In particular, the respective contributions of 1) changes affecting mechanical skin impedance, 2) peripheral processes, and 3) central processes are largely unknown. Here we used direct electrical stimulation of nerve fibers to bypass mechanical transduction processes and thereby explore the possible contribution of central vs. peripheral processes to vibrotactile adaptation. Three experiments were conducted. In the first, adaptation was induced with mechanical vibration of the fingertip (51- or 251-Hz vibration delivered for 8 min, at 40× detection threshold). In the second, we attempted to induce adaptation with transcutaneous electrical stimulation of the median nerve (51- or 251-Hz constant-current pulses delivered for 8 min, at 1.5× detection threshold). Vibrotactile detection thresholds were measured before and after adaptation. Mechanical stimulation induced a clear increase of vibrotactile detection thresholds. In contrast, thresholds were unaffected by electrical stimulation. In the third experiment, we assessed the effect of mechanical adaptation on the detection thresholds to transcutaneous electrical nerve stimuli, measured before and after adaptation. Electrical detection thresholds were unaffected by the mechanical adaptation. Taken together, our results suggest that vibrotactile adaptation is predominantly the consequence of peripheral mechanoreceptor processes and/or changes in biomechanical properties of the skin.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Silent Expectations: Dynamic Causal Modeling of Cortical Prediction and Attention to Sounds That Weren’t

Chennu, S., Noreika, V., Gueorguiev, D., Shtyrov, Y., Bekinschtein, T. A., Henson, R.

Journal of Neuroscience, 36(32):8305-8316, Society for Neuroscience, 2016 (article)

Abstract
There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called {\textquotedblleft}mismatch response{\textquotedblright}). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an {\textquotedblleft}omission{\textquotedblright} response). This situation arguably provides a more direct measure of {\textquotedblleft}top-down{\textquotedblright} predictions in the absence of confounding {\textquotedblleft}bottom-up{\textquotedblright} input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG and MEG to an auditory paradigm in which we factorially crossed the presence versus absence of {\textquotedblleft}bottom-up{\textquotedblright} stimuli with the presence versus absence of {\textquotedblleft}top-down{\textquotedblright} attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward {\textquotedblleft}prediction{\textquotedblright} connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction.SIGNIFICANCE STATEMENT Human auditory perception is thought to be realized by a network of neurons that maintain a model of and predict future stimuli. Much of the evidence for this comes from experiments where a stimulus unexpectedly differs from previous ones, which generates a well-known {\textquotedblleft}mismatch response.{\textquotedblright} But what happens when a stimulus is unexpectedly omitted altogether? By measuring the brain{\textquoteright}s electromagnetic activity, we show that it also generates an {\textquotedblleft}omission response{\textquotedblright} that is contingent on the presence of attention. We model these responses computationally, revealing that mismatch and omission responses only differ in the location of inputs into the same underlying neuronal network. In both cases, we show that attention selectively strengthens the brain{\textquoteright}s prediction of the future.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
One for all?! Simultaneous examination of load-inducing factors for advancing media-related instructional research

Wirzberger, M., Beege, M., Schneider, S., Nebel, S., Rey, G. D.

Computers {\&} Education, 100, pages: 18-31, Elsevier BV, 2016 (article)

Abstract
In multimedia learning settings, limitations in learners' mental resource capacities need to be considered to avoid impairing effects on learning performance. Based on the prominent and often quoted Cognitive Load Theory, this study investigates the potential of a single experimental approach to provide simultaneous and separate measures for the postulated load-inducing factors. Applying a basal letter-learning task related to the process of working memory updating, intrinsic cognitive load (by varying task complexity), extraneous cognitive load (via inducing split-attention demands) and germane cognitive load (by varying the presence of schemata) were manipulated within a 3 × 2 × 2-factorial full repeated-measures design. The performance of a student sample (N = 96) was inspected regarding reaction times and errors in updating and recall steps. Approaching the results with linear mixed models, the effect of complexity gained substantial strength, whereas the other factors received at least partial significant support. Additionally, interactions between two or all load-inducing factors occurred. Despite various open questions, the study comprises a promising step for the empirical investigation of existing construction yards in cognitive load research.

re

DOI [BibTex]

DOI [BibTex]


no image
Touch uses frictional cues to discriminate flat materials

Gueorguiev, D., Bochereau, S., Mouraux, A., Hayward, V., Thonnard, J.

Scientific reports, 6, pages: 25553, Nature Publishing Group, 2016 (article)

hi

[BibTex]

[BibTex]