Header logo is


2020


no image
Vision-based Force Estimation for a da Vinci Instrument Using Deep Neural Networks

Lee, Y., Husin, H. M., Forte, M. P., Lee, S., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Cleveland, Ohio, USA, August 2020 (misc) Accepted

hi

[BibTex]

2020


[BibTex]


no image
Where Does It End? - Reasoning About Hidden Surfaces by Object Intersection Constraints

Strecke, M., Stückler, J.

In Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020, to appear (inproceedings) Accepted

ev

[BibTex]

[BibTex]


A Fabric-Based Sensing System for Recognizing Social Touch
A Fabric-Based Sensing System for Recognizing Social Touch

Burns, R. B., Lee, H., Seifi, H., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) to be presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc) Accepted

Abstract
We present a fabric-based piezoresistive tactile sensor system designed to detect social touch gestures on a robot. The unique sensor design utilizes three layers of low-conductivity fabric sewn together on alternating edges to form an accordion pattern and secured between two outer high-conductivity layers. This five-layer design demonstrates a greater resistance range and better low-force sensitivity than previous designs that use one layer of low-conductivity fabric with or without a plastic mesh layer. An individual sensor from our system can presently identify six different communication gestures – squeezing, patting, scratching, poking, hand resting without movement, and no touch – with an average accuracy of 90%. A layer of foam can be added beneath the sensor to make a rigid robot more appealing for humans to touch without inhibiting the system’s ability to register social touch gestures.

hi

Project Page [BibTex]

Project Page [BibTex]


Do Touch Gestures Affect How Electrovibration Feels?
Do Touch Gestures Affect How Electrovibration Feels?

Vardar, Y., Kuchenbecker, K. J.

Hands-on demonstration (1 page) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc) Accepted

hi

[BibTex]

[BibTex]


Learning to Predict Perceptual Distributions of Haptic Adjectives
Learning to Predict Perceptual Distributions of Haptic Adjectives

Richardson, B. A., Kuchenbecker, K. J.

Frontiers in Neurorobotics, 13(116):1-16, Febuary 2020 (article)

Abstract
When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

hi

DOI [BibTex]

DOI [BibTex]


no image
Exercising with Baxter: Preliminary Support for Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Journal of NeuroEngineering and Rehabilitation, 17(19), Febuary 2020 (article)

Abstract
Background: The worldwide population of older adults will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active at home. Methods: Building on related literature as well as guidance from experts in game design, rehabilitation, and physical and occupational therapy, we developed eight human-robot exercise games for the Baxter Research Robot, six of which involve physical human-robot contact. After extensive iteration, these games were tested in an exploratory user study including 20 younger adult and 20 older adult users. Results: Only socially and physically interactive games fell in the highest ranges for pleasantness, enjoyment, engagement, cognitive challenge, and energy level. Our games successfully spanned three different physical, cognitive, and temporal challenge levels. User trust and confidence in Baxter increased significantly between pre- and post-study assessments. Older adults experienced higher exercise, energy, and engagement levels than younger adults, and women rated the robot more highly than men on several survey questions. Conclusions: The results indicate that social-physical exercise with a robot is more pleasant, enjoyable, engaging, cognitively challenging, and energetic than similar interactions that lack physical touch. In addition to this main finding, researchers working in similar areas can build on our design practices, our open-source resources, and the age-group and gender differences that we found.

hi

DOI [BibTex]

DOI [BibTex]


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
TUM Flyers: Vision-Based MAV Navigation for Systematic Inspection of Structures

Usenko, V., Stumberg, L. V., Stückler, J., Cremers, D.

In Bringing Innovative Robotic Technologies from Research Labs to Industrial End-users: The Experience of the European Robotics Challenges, 136, pages: 189-209, Springer International Publishing, 2020 (inbook)

ev

[BibTex]

[BibTex]


Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment
Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment

Nam, S., Vardar, Y., Gueorguiev, D., Kuchenbecker, K. J.

Frontiers in Neuroscience, 2020 (article) Accepted

Abstract
One may notice a relatively wide range of tactile sensations even when touching the same hard, flat surface in similar ways. Little is known about the reasons for this variability, so we decided to investigate how the perceptual intensity of light stickiness relates to the physical interaction between the skin and the surface. We conducted a psychophysical experiment in which nine participants actively pressed their finger on a flat glass plate with a normal force close to 1.5 N and detached it after a few seconds. A custom-designed apparatus recorded the contact force vector and the finger contact area during each interaction as well as pre- and post-trial finger moisture. After detaching their finger, participants judged the stickiness of the glass using a nine-point scale. We explored how sixteen physical variables derived from the recorded data correlate with each other and with the stickiness judgments of each participant. These analyses indicate that stickiness perception mainly depends on the pre-detachment pressing duration, the time taken for the finger to detach, and the impulse in the normal direction after the normal force changes sign; finger-surface adhesion seems to build with pressing time, causing a larger normal impulse during detachment and thus a more intense stickiness sensation. We additionally found a strong between-subjects correlation between maximum real contact area and peak pull-off force, as well as between finger moisture and impulse.

hi

[BibTex]


no image
Planning from Images with Deep Latent Gaussian Process Dynamics

Bosch, N., Achterhold, J., Leal-Taixe, L., Stückler, J.

2nd Annual Conference on Learning for Dynamics and Control (L4DC) , 2020 (conference) Accepted

ev

[BibTex]

[BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

DOI [BibTex]

DOI [BibTex]


Event-triggered Learning
Event-triggered Learning

Solowjow, F., Trimpe, S.

Automatica, 2020 (article) Accepted

ics

arXiv PDF Project Page [BibTex]


no image
DirectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation

Wang, R., Yang, N., Stückler, J., Cremers, D.

In Accepted for IEEE international Conference on Robotics and Automation (ICRA), 2020, arXiv:1904.10097 (inproceedings) Accepted

ev

[BibTex]

[BibTex]


Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

Abstract
Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.

am ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]

2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]


Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results
Automatic LQR Tuning Based on Gaussian Process Optimization: Early Experimental Results

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

Machine Learning in Planning and Control of Robot Motion Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS), pages: , , Machine Learning in Planning and Control of Robot Motion Workshop, October 2015 (conference)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree-of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Preliminary results of a low-dimensional tuning problem highlight the method’s potential for automatic controller tuning on robotic platforms.

am ei ics pn

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Gaussian Process Optimization for Self-Tuning Control
Gaussian Process Optimization for Self-Tuning Control

Marco, A.

Polytechnic University of Catalonia (BarcelonaTech), October 2015 (mastersthesis)

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Adaptive and Learning Concepts in Hydraulic Force Control

Doerr, A.

University of Stuttgart, September 2015 (mastersthesis)

am ics

[BibTex]

[BibTex]


Direct Loss Minimization Inverse Optimal Control
Direct Loss Minimization Inverse Optimal Control

Doerr, A., Ratliff, N., Bohg, J., Toussaint, M., Schaal, S.

In Proceedings of Robotics: Science and Systems, Rome, Italy, Robotics: Science and Systems XI, July 2015 (inproceedings)

Abstract
Inverse Optimal Control (IOC) has strongly impacted the systems engineering process, enabling automated planner tuning through straightforward and intuitive demonstration. The most successful and established applications, though, have been in lower dimensional problems such as navigation planning where exact optimal planning or control is feasible. In higher dimensional systems, such as humanoid robots, research has made substantial progress toward generalizing the ideas to model free or locally optimal settings, but these systems are complicated to the point where demonstration itself can be difficult. Typically, real-world applications are restricted to at best noisy or even partial or incomplete demonstrations that prove cumbersome in existing frameworks. This work derives a very flexible method of IOC based on a form of Structured Prediction known as Direct Loss Minimization. The resulting algorithm is essentially Policy Search on a reward function that rewards similarity to demonstrated behavior (using Covariance Matrix Adaptation (CMA) in our experiments). Our framework blurs the distinction between IOC, other forms of Imitation Learning, and Reinforcement Learning, enabling us to derive simple, versatile, and practical algorithms that blend imitation and reinforcement signals into a unified framework. Our experiments analyze various aspects of its performance and demonstrate its efficacy on conveying preferences for motion shaping and combined reach and grasp quality optimization.

am ics

PDF Video Project Page [BibTex]

PDF Video Project Page [BibTex]


no image
LMI-Based Synthesis for Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceedings of the American Control Conference, July 2015 (inproceedings)

Abstract
This paper presents an LMI-based synthesis procedure for distributed event-based state estimation. Multiple agents observe and control a dynamic process by sporadically exchanging data over a broadcast network according to an event-based protocol. In previous work [1], the synthesis of event-based state estimators is based on a centralized design. In that case three different types of communication are required: event-based communication of measurements, periodic reset of all estimates to their joint average, and communication of inputs. The proposed synthesis problem eliminates the communication of inputs as well as the periodic resets (under favorable circumstances) by accounting explicitly for the distributed structure of the control system.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Guaranteed H2 Performance in Distributed Event-Based State Estimation

Muehlebach, M., Trimpe, S.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
On the Choice of the Event Trigger in Event-based Estimation

Trimpe, S., Campi, M.

In Proceeding of the First International Conference on Event-based Control, Communication, and Signal Processing, June 2015 (inproceedings)

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Event-based Estimation and Control for Remote Robot Operation with Reduced Communication

Trimpe, S., Buchli, J.

In Proceedings of the IEEE International Conference on Robotics and Automation, May 2015 (inproceedings)

Abstract
An event-based communication framework for remote operation of a robot via a bandwidth-limited network is proposed. The robot sends state and environment estimation data to the operator, and the operator transmits updated control commands or policies to the robot. Event-based communication protocols are designed to ensure that data is transmitted only when required: the robot sends new estimation data only if this yields a significant information gain at the operator, and the operator transmits an updated control policy only if this comes with a significant improvement in control performance. The developed framework is modular and can be used with any standard estimation and control algorithms. Simulation results of a robotic arm highlight its potential for an efficient use of limited communication resources, for example, in disaster response scenarios such as the DARPA Robotics Challenge.

am ics

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


no image
Policy Search for Imitation Learning

Doerr, A.

University of Stuttgart, January 2015 (thesis)

am ics

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Kappler, D., Schaal, S.

In Robotics: Science and Systems, 2015 (inproceedings)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. GFs represent the belief of the current state by a Gaussian with the mean being an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependencies in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end we view the GF from a variational-inference perspective, and analyze how restrictions on the form of the belief can be relaxed while maintaining simplicity and efficiency. This analysis provides a basis for generalizations of the GF. We propose one such generalization which coincides with a GF using a virtual measurement, obtained by applying a nonlinear function to the actual measurement. Numerical experiments show that the proposed Feature Gaussian Filter (FGF) can have a substantial performance advantage over the standard GF for systems with nonlinear observation models.

am ics

Web PDF Project Page [BibTex]