Header logo is


2015


no image
Reducing Student Anonymity and Increasing Engagement

Kuchenbecker, K. J.

University of Pennsylvania Almanac, 62(18):8, November 2015 (article)

hi

[BibTex]

2015


[BibTex]


no image
Surgeons and Non-Surgeons Prefer Haptic Feedback of Instrument Vibrations During Robotic Surgery

Koehn, J. K., Kuchenbecker, K. J.

Surgical Endoscopy, 29(10):2970-2983, October 2015 (article)

hi

[BibTex]

[BibTex]


no image
Displaying Sensed Tactile Cues with a Fingertip Haptic Device

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 8(4):384-396, October 2015 (article)

hi

[BibTex]

[BibTex]


no image
A thin film active-lens with translational control for dynamically programmable optical zoom

Yun, S., Park, S., Park, B., Nam, S., Park, S. K., Kyung, K.

Applied Physics Letters, 107(8):081907, AIP Publishing, August 2015 (article)

Abstract
We demonstrate a thin film active-lens for rapidly and dynamically controllable optical zoom. The active-lens is composed of a convex hemispherical polydimethylsiloxane (PDMS) lens structure working as an aperture and a dielectric elastomer (DE) membrane actuator, which is a combination of a thin DE layer made with PDMS and a compliant electrode pattern using silver-nanowires. The active-lens is capable of dynamically changing focal point of the soft aperture as high as 18.4% through its translational movement in vertical direction responding to electrically induced bulged-up deformation of the DE membrane actuator. Under operation with various sinusoidal voltage signals, the movement responses are fairly consistent with those estimated from numerical simulation. The responses are not only fast, fairly reversible, and highly durable during continuous cyclic operations, but also large enough to impart dynamic focus tunability for optical zoom in microscopic imaging devices with a light-weight and ultra-slim configuration.

hi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


no image
Data-Driven Motion Mappings Improve Transparency in Teleoperation

Khurshid, R. P., Kuchenbecker, K. J.

Presence: Teleoperators and Virtual Environments, 24(2):132-154, May 2015 (article)

hi

[BibTex]

[BibTex]


no image
Robotic Learning of Haptic Adjectives Through Physical Interaction

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., Arrigo, M., Darrell, T., Kuchenbecker, K. J.

Robotics and Autonomous Systems, 63(3):279-292, 2015, Vivian Chu, Ian MacMahon, and Lorenzo Riano contributed equally to this publication. Corrigendum published in June 2016 (article)

hi

[BibTex]

[BibTex]


no image
Effects of Vibrotactile Feedback on Human Motor Learning of Arbitrary Arm Motions

Bark, K., Hyman, E., Tan, F., Cha, E., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(1):51-63, January 2015 (article)

hi

[BibTex]

[BibTex]


no image
The average number of distinct sites visited by a random walker on random graphs

De Bacco, C., Majumdar, S. N., Sollich, P.

Journal of Physics A: Mathematical and Theoretical, 48(20):205004, IOP Publishing, 2015 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
The edge-disjoint path problem on random graphs by message-passing

Altarelli, F., Braunstein, A., Dall’Asta, L., De Bacco, C., Franz, S.

PloS one, 10(12):e0145222, Public Library of Science, 2015 (article)

pio

Code Preprint link (url) Project Page [BibTex]

Code Preprint link (url) Project Page [BibTex]


no image
Kinematic and gait similarities between crawling human infants and other quadruped mammals

Righetti, L., Nylen, A., Rosander, K., Ijspeert, A.

Frontiers in Neurology, 6(17), February 2015 (article)

Abstract
Crawling on hands and knees is an early pattern of human infant locomotion, which offers an interesting way of studying quadrupedalism in one of its simplest form. We investigate how crawling human infants compare to other quadruped mammals, especially primates. We present quantitative data on both the gait and kinematics of seven 10-month-old crawling infants. Body movements were measured with an optoelectronic system giving precise data on 3-dimensional limb movements. Crawling on hands and knees is very similar to the locomotion of non-human primates in terms of the quite protracted arm at touch-down, the coordination between the spine movements in the lateral plane and the limbs, the relatively extended limbs during locomotion and the strong correlation between stance duration and speed of locomotion. However, there are important differences compared to primates, such as the choice of a lateral-sequence walking gait, which is similar to most non-primate mammals and the relatively stiff elbows during stance as opposed to the quite compliant gaits of primates. These finding raise the question of the role of both the mechanical structure of the body and neural control on the determination of these characteristics.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Non-equilibrium statistical mechanics of the heat bath for two Brownian particles : Internal degrees of freedom found where there shouldn’t be (Special Issue on New Challenges in Complex Systems Science)

De Bacco, C., Baldovin, F., Orlandini, E.

理工研報告特集号 : ASTE : advances in science, technology and environmentology : special issue, 11, pages: 111-113, 早稲田大学理工学術院総合研究所 (理工学研究所), March 2015 (article)

pio

link (url) [BibTex]

link (url) [BibTex]