Header logo is


2019


Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources
Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources

Haksar, R., Solowjow, F., Trimpe, S., Schwager, M.

In Proceedings of the 58th IEEE International Conference on Decision and Control (CDC) , 58th IEEE International Conference on Decision and Control (CDC), December 2019 (proceedings) Accepted

ics

PDF [BibTex]

2019


PDF [BibTex]


A Learnable Safety Measure
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

Arxiv [BibTex]


Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees
Fast Feedback Control over Multi-hop Wireless Networks with Mode Changes and Stability Guarantees

Baumann, D., Mager, F., Jacob, R., Thiele, L., Zimmerling, M., Trimpe, S.

ACM Transactions on Cyber-Physical Systems, 4(2):18, November 2019 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
How do people learn how to plan?

Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.

Conference on Cognitive Computational Neuroscience, September 2019 (conference)

re

[BibTex]

[BibTex]


Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems
Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems

Mastrangelo, J. M., Baumann, D., Trimpe, S.

In Proceedings of the 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pages: 79-84, 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), September 2019 (inproceedings)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
An ACT-R approach to investigating mechanisms of performance-related changes in an interrupted learning task

Wirzberger, M., Borst, J. P., Krems, J. F., Rey, G. D.

41st Annual Meeting of the Cognitive Science Society., July 2019 (conference)

re

[BibTex]

[BibTex]


no image
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice

Mohnert, F., Pachur, T., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

re

[BibTex]


no image
Measuring how people learn how to plan

Jain, Y. R., Callaway, F., Lieder, F.

RLDM 2019, July 2019 (conference)

re

[BibTex]

[BibTex]


Event-triggered Pulse Control with Model Learning (if Necessary)
Event-triggered Pulse Control with Model Learning (if Necessary)

Baumann, D., Solowjow, F., Johansson, K. H., Trimpe, S.

In Proceedings of the American Control Conference, pages: 792-797, American Control Conference (ACC), July 2019 (inproceedings)

ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Measuring how people learn how to plan

Jain, Y. R., Callaway, F., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

re

[BibTex]

[BibTex]


no image
A model-based explanation of performance related changes in abstract stimulus-response learning

Wirzberger, M., Borst, J. P., Krems, J. F., Rey, G. D.

52nd Annual Meeting of the Society for Mathematical Psychology, July 2019 (conference)

Abstract
Stimulus-response learning constitutes an important part of human experience over the life course. Independent of the domain, it is characterized by changes in performance with increasing task progress. But what cognitive mechanisms are responsible for these changes and how do additional task requirements affect the related dynamics? To inspect that in more detail, we introduce a computational modeling approach that investigates performance-related changes in learning situations with reference to chunk activation patterns. It leverages the cognitive architecture ACT-R to model learner behavior in abstract stimulus-response learning in two conditions of task complexity. Additional situational demands are reflected in embedded secondary tasks that interrupt participants during the learning process. Our models apply an activation equation that also takes into account the association between related nodes of information and the similarity between potential responses. Model comparisons with two human datasets (N = 116 and N = 123 participants) indicate a good fit in terms of both accuracy and reaction times. Based on the existing neurophysiological mapping of ACT-R modules on defined human brain areas, we convolve recorded module activity into simulated BOLD responses to investigate underlying cognitive mechanisms in more detail. The resulting evidence supports the connection of learning effects in both task conditions with activation-related patterns to explain changes in performance.

re

[BibTex]

[BibTex]


no image
A cognitive tutor for helping people overcome present bias

Lieder, F., Callaway, F., Jain, Y., Krueger, P., Das, P., Gul, S., Griffiths, T.

RLDM 2019, July 2019 (conference)

re

[BibTex]

[BibTex]


Data-driven inference of passivity properties via Gaussian process optimization
Data-driven inference of passivity properties via Gaussian process optimization

Romer, A., Trimpe, S., Allgöwer, F.

In Proceedings of the European Control Conference, European Control Conference (ECC), June 2019 (inproceedings)

ics

PDF [BibTex]

PDF [BibTex]


no image
Actively Learning Gaussian Process Dynamics

Buisson-Fenet, M., Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

Abstract
Despite the availability of ever more data enabled through modern sensor and computer technology, it still remains an open problem to learn dynamical systems in a sample-efficient way. We propose active learning strategies that leverage information-theoretical properties arising naturally during Gaussian process regression, while respecting constraints on the sampling process imposed by the system dynamics. Sample points are selected in regions with high uncertainty, leading to exploratory behavior and data-efficient training of the model. All results are verified in an extensive numerical benchmark.

ics

ArXiv [BibTex]


no image
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions

Iwama, G., Greenberg, S., Moore, D., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

re

[BibTex]

[BibTex]


Trajectory-Based Off-Policy Deep Reinforcement Learning
Trajectory-Based Off-Policy Deep Reinforcement Learning

Doerr, A., Volpp, M., Toussaint, M., Trimpe, S., Daniel, C.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), June 2019 (inproceedings)

Abstract
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.

ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


Resource-aware IoT Control: Saving Communication through Predictive Triggering
Resource-aware IoT Control: Saving Communication through Predictive Triggering

Trimpe, S., Baumann, D.

IEEE Internet of Things Journal, 6(3):5013-5028, June 2019 (article)

Abstract
The Internet of Things (IoT) interconnects multiple physical devices in large-scale networks. When the 'things' coordinate decisions and act collectively on shared information, feedback is introduced between them. Multiple feedback loops are thus closed over a shared, general-purpose network. Traditional feedback control is unsuitable for design of IoT control because it relies on high-rate periodic communication and is ignorant of the shared network resource. Therefore, recent event-based estimation methods are applied herein for resource-aware IoT control allowing agents to decide online whether communication with other agents is needed, or not. While this can reduce network traffic significantly, a severe limitation of typical event-based approaches is the need for instantaneous triggering decisions that leave no time to reallocate freed resources (e.g., communication slots), which hence remain unused. To address this problem, novel predictive and self triggering protocols are proposed herein. From a unified Bayesian decision framework, two schemes are developed: self triggers that predict, at the current triggering instant, the next one; and predictive triggers that check at every time step, whether communication will be needed at a given prediction horizon. The suitability of these triggers for feedback control is demonstrated in hardware experiments on a cart-pole, and scalability is discussed with a multi-vehicle simulation.

ics

PDF arXiv DOI [BibTex]

PDF arXiv DOI [BibTex]


Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks
Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

(Best Paper Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pages: 97-108, 10th ACM/IEEE International Conference on Cyber-Physical Systems, April 2019 (inproceedings)

Abstract
Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals below 100 ms. Low-power wireless is preferred for its flexibility, low cost, and small form factor, especially if the devices support multi-hop communication. Thus far, however, closed-loop control over multi-hop low-power wireless has only been demonstrated for update intervals on the order of multiple seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance such as jitter or packet loss, and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for linear dynamic systems. Using experiments on a testbed with multiple cart-pole systems, we are the first to demonstrate the feasibility and to assess the performance of closed-loop control and coordination over multi-hop low-power wireless for update intervals from 20 ms to 50 ms.

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


no image
Demo Abstract: Fast Feedback Control and Coordination with Mode Changes for Wireless Cyber-Physical Systems

(Best Demo Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

Proceedings of the 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 340-341, 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), April 2019 (poster)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems
Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems

Baumann, D.

KTH Royal Institute of Technology, Stockholm, Febuary 2019 (phdthesis)

ics

PDF [BibTex]

PDF [BibTex]


Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study
Data-efficient Auto-tuning with Bayesian Optimization: An Industrial Control Study

Neumann-Brosig, M., Marco, A., Schwarzmann, D., Trimpe, S.

IEEE Transactions on Control Systems Technology, 2019 (article) Accepted

Abstract
Bayesian optimization is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the Bayesian optimization algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm thus iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed auto-tuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed auto-tuning framework is flexible and can handle different control structures and objectives.

ics

arXiv (PDF) DOI Project Page [BibTex]

arXiv (PDF) DOI Project Page [BibTex]


no image
Spatial Continuity Effect vs. Spatial Contiguity Failure. Revising the Effects of Spatial Proximity Between Related and Unrelated Representations

Beege, M., Wirzberger, M., Nebel, S., Schneider, S., Schmidt, N., Rey, G. D.

Frontiers in Education, 4:86, 2019 (article)

Abstract
The split-attention effect refers to learning with related representations in multimedia. Spatial proximity and integration of these representations are crucial for learning processes. The influence of varying amounts of proximity between related and unrelated information has not yet been specified. In two experiments (N1 = 98; N2 = 85), spatial proximity between a pictorial presentation and text labels was manipulated (high vs. medium vs. low). Additionally, in experiment 1, a control group with separated picture and text presentation was implemented. The results revealed a significant effect of spatial proximity on learning performance. In contrast to previous studies, the medium condition leads to the highest transfer, and in experiment 2, the highest retention score. These results are interpreted considering cognitive load and instructional efficiency. Findings indicate that transfer efficiency is optimal at a medium distance between representations in experiment 1. Implications regarding the spatial contiguity principle and the spatial contiguity failure are discussed.

re

link (url) DOI [BibTex]


no image
Load-inducing factors in instructional design: Process-related advances in theory and assessment

Wirzberger, M.

TU Chemnitz, 2019 (phdthesis)

Abstract
This thesis addresses ongoing controversies in cognitive load research related to the scope and interplay of resource-demanding factors in instructional situations on a temporal perspective. In a novel approach, it applies experimental task frameworks from basic cognitive research and combines different methods for assessing cognitive load and underlying cognitive processes. Taken together, the obtained evidence emphasizes a process-related reconceptualization of the existing theoretical cognitive load framework and underlines the importance of a multimethod-approach to continuous cognitive load assessment. On a practical side, it informs the development of adaptive algorithms and the learner-aligned design of instructional support and thus leverages a pathway towards intelligent educational assistants.

re

link (url) [BibTex]


no image
Doing more with less: Meta-reasoning and meta-learning in humans and machines

Griffiths, T., Callaway, F., Chang, M., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


Event-triggered Learning
Event-triggered Learning

Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

ics

arXiv PDF [BibTex]


no image
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T.

Nature Human Behavior, 2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Remediating cognitive decline with cognitive tutors

Das, P., Callaway, F., Griffiths, T., Lieder, F.

RLDM 2019, 2019 (conference)

re

[BibTex]

[BibTex]


no image
Effects of system response delays on elderly humans’ cognitive performance in a virtual training scenario

Wirzberger, M., Schmidt, R., Georgi, M., Hardt, W., Brunnett, G., Rey, G. D.

Scientific Reports, 9:8291, 2019 (article)

Abstract
Observed influences of system response delay in spoken human-machine dialogues are rather ambiguous and mainly focus on perceived system quality. Studies that systematically inspect effects on cognitive performance are still lacking, and effects of individual characteristics are also often neglected. Building on benefits of cognitive training for decelerating cognitive decline, this Wizard-of-Oz study addresses both issues by testing 62 elderly participants in a dialogue-based memory training with a virtual agent. Participants acquired the method of loci with fading instructional guidance and applied it afterward to memorizing and recalling lists of German nouns. System response delays were randomly assigned, and training performance was included as potential mediator. Participants’ age, gender, and subscales of affinity for technology (enthusiasm, competence, positive and negative perception of technology) were inspected as potential moderators. The results indicated positive effects on recall performance with higher training performance, female gender, and less negative perception of technology. Additionally, memory retention and facets of affinity for technology moderated increasing system response delays. Participants also provided higher ratings in perceived system quality with higher enthusiasm for technology but reported increasing frustration with a more positive perception of technology. Potential explanations and implications for the design of spoken dialogue systems are discussed.

re

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A meta-analysis of the segmenting effect

Rey, G. D., Beege, M., Nebel, S., Wirzberger, M., Schmitt, T., Schneider, S.

Educational Psychology Review, 2019 (article)

Abstract
The segmenting effect states that people learn better when multimedia instructions are presented in (meaningful and coherent) learner-paced segments, rather than as continuous units. This meta-analysis contains 56 investigations including 88 pairwise comparisons and reveals a significant segmenting effect with small to medium effects for retention and transfer performance. Segmentation also reduces the overall cognitive load and increases learning time. These four effects are confirmed for a system-paced segmentation. The meta-analysis tests different explanations for the segmenting effect that concern facilitating chunking and structuring due to segmenting the multimedia instruction by the instructional designer, providing more time for processing the instruction and allowing the learners to adapt the presentation pace to their individual needs. Moderation analyses indicate that learners with high prior knowledge benefitted more from segmenting instructional material than learners with no or low prior knowledge in terms of retention performance.

re

DOI [BibTex]

DOI [BibTex]


no image
A rational reinterpretation of dual process theories

Milli, S., Lieder, F., Griffiths, T.

2019 (article)

re

DOI [BibTex]

DOI [BibTex]


no image
Actively Learning Dynamical Systems with Gaussian Processes

Buisson-Fenet, M.

Mines ParisTech, PSL Research University, 2019 (mastersthesis)

Abstract
Predicting the behavior of complex systems is of great importance in many fields such as engineering, economics or meteorology. The evolution of such systems often follows a certain structure, which can be induced, for example from the laws of physics or of market forces. Mathematically, this structure is often captured by differential equations. The internal functional dependencies, however, are usually unknown. Hence, using machine learning approaches that recreate this structure directly from data is a promising alternative to designing physics-based models. In particular, for high dimensional systems with nonlinear effects, this can be a challenging task. Learning dynamical systems is different from the classical machine learning tasks, such as image processing, and necessitates different tools. Indeed, dynamical systems can be actuated, often by applying torques or voltages. Hence, the user has a power of decision over the system, and can drive it to certain states by going through the dynamics. Actuating this system generates data, from which a machine learning model of the dynamics can be trained. However, gathering informative data that is representative of the whole state space remains a challenging task. The question of active learning then becomes important: which control inputs should be chosen by the user so that the data generated during an experiment is informative, and enables efficient training of the dynamics model? In this context, Gaussian processes can be a useful framework for approximating system dynamics. Indeed, they perform well on small and medium sized data sets, as opposed to most other machine learning frameworks. This is particularly important considering data is often costly to generate and process, most of all when producing it involves actuating a complex physical system. Gaussian processes also yield a notion of uncertainty, which indicates how sure the model is about its predictions. In this work, we investigate in a principled way how to actively learn dynamical systems, by selecting control inputs that generate informative data. We model the system dynamics by a Gaussian process, and use information-theoretic criteria to identify control trajectories that maximize the information gain. Thus, the input space can be explored efficiently, leading to a data-efficient training of the model. We propose several methods, investigate their theoretical properties and compare them extensively in a numerical benchmark. The final method proves to be efficient at generating informative data. Thus, it yields the lowest prediction error with the same amount of samples on most benchmark systems. We propose several variants of this method, allowing the user to trade off computations with prediction accuracy, and show it is versatile enough to take additional objectives into account.

ics

[BibTex]

[BibTex]

2016


A New Perspective and Extension of the Gaussian Filter
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

2016


PDF DOI Project Page [BibTex]


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Robust Gaussian Filtering using a Pseudo Measurement
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference (ACC), Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

am ics

Web link (url) DOI Project Page [BibTex]

Web link (url) DOI Project Page [BibTex]


Automatic {LQR} Tuning Based on {G}aussian Process Global Optimization
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video PDF DOI Project Page [BibTex]

Video PDF DOI Project Page [BibTex]


Depth-based Object Tracking Using a Robust Gaussian Filter
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

am ics

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]


no image
Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am ics

PDF [BibTex]

PDF [BibTex]


no image
Sustainable effects of simulator-based training on ecological driving

Lüderitz, C., Wirzberger, M., Karrer-Gauß, K.

In Advances in Ergonomic Design of Systems, Products and Processes. Proceedings of the Annual Meeting of the GfA 2015, pages: 463-475, Springer, 2016 (inbook)

Abstract
Simulation-based driver training offers a promising way to teach ecological driving behavior under controlled, comparable conditions. In a study with 23 professional drivers, we tested the effectiveness of such training. The driving behavior of a training group in a simulated drive with and without instructions were compared. Ten weeks later, a repetition drive tested the long-term effect training. Driving data revealed reduced fuel consumption by ecological driving in both the guided and repetition drives. Driving time decreased significantly in the training and did not differ from driving time after 10 weeks. Results did not achieve significance for transfer to test drives in real traffic situations. This may be due to the small sample size and biased data as a result of unusual driving behavior. Finally, recent and promising approaches to support drivers in maintaining eco-driving styles beyond training situations are outlined.

re

DOI [BibTex]

DOI [BibTex]


no image
One for all?! Simultaneous examination of load-inducing factors for advancing media-related instructional research

Wirzberger, M., Beege, M., Schneider, S., Nebel, S., Rey, G. D.

Computers {\&} Education, 100, pages: 18-31, Elsevier BV, 2016 (article)

Abstract
In multimedia learning settings, limitations in learners' mental resource capacities need to be considered to avoid impairing effects on learning performance. Based on the prominent and often quoted Cognitive Load Theory, this study investigates the potential of a single experimental approach to provide simultaneous and separate measures for the postulated load-inducing factors. Applying a basal letter-learning task related to the process of working memory updating, intrinsic cognitive load (by varying task complexity), extraneous cognitive load (via inducing split-attention demands) and germane cognitive load (by varying the presence of schemata) were manipulated within a 3 × 2 × 2-factorial full repeated-measures design. The performance of a student sample (N = 96) was inspected regarding reaction times and errors in updating and recall steps. Approaching the results with linear mixed models, the effect of complexity gained substantial strength, whereas the other factors received at least partial significant support. Additionally, interactions between two or all load-inducing factors occurred. Despite various open questions, the study comprises a promising step for the empirical investigation of existing construction yards in cognitive load research.

re

DOI [BibTex]

DOI [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Examining load-inducing factors in instructional design: An ACT-R approach

Wirzberger, M., Rey, G. D.

In Proceedings of the 14th International Conference on Cognitive Modeling (ICCM 2016), pages: 223-224, University Park, PA, Penn State, 2016 (inproceedings)

re

[BibTex]

[BibTex]


no image
Helping people make better decisions using optimal gamification

Lieder, F., Griffiths, T. L.

In Proceedings of the 38th Annual Conference of the Cognitive Science Society, 2016 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]