ei
Mastakouri, A., Schölkopf, B., Janzing, D.
Selecting causal brain features with a single conditional independence test per feature
Advances in Neural Information Processing Systems 32, 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference) Accepted
ei
von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.
Semi-supervised learning, causality, and the conditional cluster assumption
NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted
ei
von Kügelgen, J., Rubenstein, P., Schölkopf, B., Weller, A.
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted
pf
Ma, Z., Holle, A., Melde, K., Qiu, T., Poeppel, K., Kadiri, V., Fischer, P.
Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel
Adv. Mat., October 2019 (article)
pf
Choi, E., Adams, F., Gengenbacher, A., Schlager, D., Palagi, S., Müller, P., Wetterauer, U., Miernik, A., Fischer, P., Qiu, T.
A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate
Annals of Biomed. Eng., October 2019 (article)
pf
Fischer, P.
Interactive Materials – Drivers of Future Robotic Systems
Adv. Mat., October 2019 (article)
ei
Ozdenizci, O., Meyer, T., Wichmann, F., Peters, J., Schölkopf, B., Cetin, M., Grosse-Wentrup, M.
Neural Signatures of Motor Skill in the Resting Brain
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2019), October 2019 (conference) Accepted
pf
Jeong, H., Adams, M. C., Guenther, J., Alarcon-Correa, M., Kim, I., Choi, E., Miksch, C., Mark, A. F. M., Mark, A. G., Fischer, P.
Arrays of plasmonic nanoparticle dimers with defined nanogap spacers
ACS Nano, September 2019 (article)
ei
Gebhard, T., Kilbertus, N., Harry, I., Schölkopf, B.
Convolutional neural networks: A magic bullet for gravitational-wave detection?
Physical Review D, 100(6):063015, American Physical Society, September 2019 (article)
re
Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.
How do people learn how to plan?
Conference on Cognitive Computational Neuroscience, September 2019 (conference)
ei
Babbar, R., Schölkopf, B.
Data scarcity, robustness and extreme multi-label classification
Machine Learning, 108(8):1329-1351, September 2019, Special Issue of the ECML PKDD 2019 Journal Track (article)
pf
Kadiri, V. M., Alarcon-Correa, M., Guenther, J. P., Ruppert, J., Bill, J., Rothenstein, D., Fischer, P.
Genetically modified M13 bacteriophage nanonets for enzyme catalysis and recovery
Catalysts, 9, pages: 723, August 2019 (article)
pf
Palagi, S., Singh, D. P., Fischer, P.
Light-controlled micromotors and soft microrobots
Adv. Opt. Mat., 7, pages: 1900370, August 2019 (article)
pf
Choi, E., Jeong, H., Qiu, T., Fischer, P., Palagi, S.
Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels
4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)
pf
Li., D., Suarez-Ibarrola, R., Choi, E., Jeong, M., Gratzke, C., Miernik, A., Fischer, P., Qiu, T.
Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy
41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), July 2019 (conference)
pf
Jeong, M., Choi, E., Li., D., Palagi, S., Fischer, P., Qiu, T.
A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials
4th IEEE International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), July 2019 (conference)
ei
Mastakouri, A., Schölkopf, B., Grosse-Wentrup, M.
Beta Power May Mediate the Effect of Gamma-TACS on Motor Performance
Engineering in Medicine and Biology Conference (EMBC), July 2019 (conference) Accepted
re
Xu, L., Wirzberger, M., Lieder, F.
How should we incentivize learning? An optimal feedback mechanism for educational games and online courses
41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)
ei
Geiger, P., Besserve, M., Winkelmann, J., Proissl, C., Schölkopf, B.
Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 49, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
re
Mohnert, F., Pachur, T., Lieder, F.
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice
41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)
re
Jain, Y. R., Callaway, F., Lieder, F.
Measuring how people learn how to plan
RLDM 2019, July 2019 (conference)
re
Jain, Y. R., Callaway, F., Lieder, F.
Measuring how people learn how to plan
41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)
ei
Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., Silva, R.
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 213, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
re
Lieder, F., Callaway, F., Jain, Y., Krueger, P., Das, P., Gul, S., Griffiths, T.
A cognitive tutor for helping people overcome present bias
RLDM 2019, July 2019 (conference)
ei
Gresele*, L., Rubenstein*, P. K., Mehrjou, A., Locatello, F., Schölkopf, B.
The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 53, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019, *equal contribution (conference)
ei
Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K., Ghahramani, Z.
Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI), pages: 124, (Editors: Amir Globerson and Ricardo Silva), AUAI Press, July 2019 (conference)
ei
Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.
Kernel Mean Matching for Content Addressability of GANs
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 3140-3151, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019, *equal contribution (conference)
ei
Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S., Schölkopf, B., Bachem, O.
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 4114-4124, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
ps
Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.
Local Temporal Bilinear Pooling for Fine-grained Action Parsing
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)
ei
Jitkrittum*, W., Sangkloy*, P., Gondal, M. W., Raj, A., Hays, J., Schölkopf, B.
Generate Semantically Similar Images with Kernel Mean Matching
6th Workshop Women in Computer Vision (WiCV) (oral presentation), June 2019, *equal contribution (conference) Accepted
re
Iwama, G., Greenberg, S., Moore, D., Lieder, F.
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions
40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)
ei
Akrour, R., Pajarinen, J., Peters, J., Neumann, G.
Projections for Approximate Policy Iteration Algorithms
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 181-190, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
re
Iwama, G. Y., Wirzberger, M., Lieder, F.
The Goal Characteristics (GC) questionannaire: A comprehensive measure for goals’ content, attainability, interestingness, and usefulness
40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)
ei
Becker-Ehmck, P., Peters, J., van der Smagt, P.
Switching Linear Dynamics for Variational Bayes Filtering
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 553-562, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
Suter, R., Miladinovic, D., Schölkopf, B., Bauer, S.
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 6056-6065, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
al
Rolinek, M., Zietlow, D., Martius, G.
Variational Autoencoders Recover PCA Directions (by Accident)
In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)
ei
Simon-Gabriel, C., Ollivier, Y., Bottou, L., Schölkopf, B., Lopez-Paz, D.
First-Order Adversarial Vulnerability of Neural Networks and Input Dimension
Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 5809-5817, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (conference)
ei
Ialongo, A. D., Van Der Wilk, M., Hensman, J., Rasmussen, C. E.
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
In Proceedings of the 36th International Conference on Machine Learning (ICML), 97, pages: 2931-2940, Proceedings of Machine Learning Research, (Editors: Chaudhuri, Kamalika and Salakhutdinov, Ruslan), PMLR, June 2019 (inproceedings)
ei
Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., Turner, R.
Meta learning variational inference for prediction
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Lutter, M., Ritter, C., Peters, J.
Deep Lagrangian Networks: Using Physics as Model Prior for Deep Learning
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
pn
Schneider, F., Balles, L., Hennig, P.
DeepOBS: A Deep Learning Optimizer Benchmark Suite
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Miladinović*, D., Gondal*, M. W., Schölkopf, B., Buhmann, J. M., Bauer, S.
Disentangled State Space Models: Unsupervised Learning of Dynamics across Heterogeneous Environments
Deep Generative Models for Highly Structured Data Workshop at ICLR, May 2019, *equal contribution (conference)
ei
Fortuin, V., Hüser, M., Locatello, F., Strathmann, H., Rätsch, G.
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
7th International Conference on Learning Representations (ICLR), May 2019 (conference)
ei
Bauer, M., Mnih, A.
Resampled Priors for Variational Autoencoders
22nd International Conference on Artificial Intelligence and Statistics, April 2019 (conference) Accepted
ei
von Kügelgen, J., Mey, A., Loog, M.
Semi-Generative Modelling: Covariate-Shift Adaptation with Cause and Effect Features
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1361-1369, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ei
Mroueh, Y., Sercu, T., Raj, A.
Sobolev Descent
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 2976-2985, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ei
pn
Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.
Fast and Robust Shortest Paths on Manifolds Learned from Data
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
pn
ei
de Roos, F., Hennig, P.
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
ei
Wenk, P., Gotovos, A., Bauer, S., Gorbach, N., Krause, A., Buhmann, J. M.
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs
Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1351-1360, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)
pf
Alarcon-Correa, M., Guenther, J., Troll, J., Kadiri, V. M., Bill, J., Fischer, P., Rothenstein, D.
Self-Assembled Phage-Based Colloids for High Localized Enzymatic Activity
ACS Nano, March 2019 (article)