ei
Schmidt, M., Kim, D., Sra, S.
Projected Newton-type methods in machine learning
In Optimization for Machine Learning, pages: 305-330, (Editors: Sra, S., Nowozin, S. and Wright, S. J.), MIT Press, Cambridge, MA, USA, December 2011 (inbook)
ei
von Luxburg, U., Schölkopf, B.
Statistical Learning Theory: Models, Concepts, and Results
In Handbook of the History of Logic, Vol. 10: Inductive Logic, 10, pages: 651-706, (Editors: Gabbay, D. M., Hartmann, S. and Woods, J. H.), Elsevier North Holland, Amsterdam, Netherlands, May 2011 (inbook)
ei
Lang, A.
Crowdsourcing for optimisation of deconvolution methods via an iPhone application
Hochschule Reutlingen, Germany, April 2011 (mastersthesis)
ei
Peters, J., Tedrake, R., Roy, N., Morimoto, J.
Robot Learning
In Encyclopedia of Machine Learning, pages: 865-869, Encyclopedia of machine learning, (Editors: Sammut, C. and Webb, G. I.), Springer, New York, NY, USA, January 2011 (inbook)
ei
Ihme, K., Zander, TO.
What You Expect Is What You Get? Potential Use of Contingent Negative Variation for Passive BCI Systems in Gaze-Based HCI
In Affective Computing and Intelligent Interaction, 6975, pages: 447-456, Lecture Notes in Computer Science, (Editors: D’Mello, S., Graesser, A., Schuller, B. and Martin, J.-C.), Springer, Berlin, Germany, 2011 (inbook)
ei
Borgwardt, KM.
Kernel Methods in Bioinformatics
In Handbook of Statistical Bioinformatics, pages: 317-334, Springer Handbooks of Computational Statistics ; 3, (Editors: Lu, H.H.-S., Schölkopf, B. and Zhao, H.), Springer, Berlin, Germany, 2011 (inbook)
ei
Rosas, P., Wichmann, F.
Cue Combination: Beyond Optimality
In Sensory Cue Integration, pages: 144-152, (Editors: Trommershäuser, J., Körding, K. and Landy, M. S.), Oxford University Press, 2011 (inbook)
ei
Nguyen-Tuong, D.
Model Learning in Robot Control
Albert-Ludwigs-Universität Freiburg, Germany, 2011 (phdthesis)
ei
Shin, H., Tsuda, K.
Prediction of Protein Function from Networks
In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)
ei
Zhou, D., Schölkopf, B.
Discrete Regularization
In Semi-supervised Learning, pages: 237-250, Adaptive computation and machine learning, (Editors: O Chapelle and B Schölkopf and A Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)
ei
Huhle, B.
Kernel PCA for Image Compression
Biologische Kybernetik, Eberhard-Karls-Universität, Tübingen, Germany, April 2006 (diplomathesis)
ei
Kuss, M.
Gaussian Process Models for Robust Regression, Classification, and Reinforcement Learning
Biologische Kybernetik, Technische Universität Darmstadt, Darmstadt, Germany, March 2006, passed with distinction, published online (phdthesis)
ei
Lal, T., Chapelle, O., Schölkopf, B.
Combining a Filter Method with SVMs
In Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft Computing, Vol. 207, pages: 439-446, Studies in Fuzziness and Soft Computing ; 207, (Editors: I Guyon and M Nikravesh and S Gunn and LA Zadeh), Springer, Berlin, Germany, 2006 (inbook)
ei
Lal, T., Chapelle, O., Weston, J., Elisseeff, A.
Embedded methods
In Feature Extraction: Foundations and Applications, pages: 137-165, Studies in Fuzziness and Soft Computing ; 207, (Editors: Guyon, I. , S. Gunn, M. Nikravesh, L. A. Zadeh), Springer, Berlin, Germany, 2006 (inbook)
ei
Stark, S., Berlin, M.
Distributed Command Execution
In BSD Hacks: 100 industrial-strength tips & tools, pages: 152-152, (Editors: Lavigne, Dru), O’Reilly, Beijing, May 2004 (inbook)
ei
Rasmussen, CE.
Gaussian Processes in Machine Learning
In 3176, pages: 63-71, Lecture Notes in Computer Science, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, 2004, Copyright by Springer (inbook)
ei
Kin, T., Kato, T., Tsuda, K.
Protein Classification via Kernel Matrix Completion
In pages: 261-274, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)
ei
von Luxburg, U.
Statistical Learning with Similarity and Dissimilarity Functions
pages: 1-166, Technische Universität Berlin, Germany, Technische Universität Berlin, Germany, 2004 (phdthesis)
ei
Bousquet, O., Boucheron, S., Lugosi, G.
Introduction to Statistical Learning Theory
In Lecture Notes in Artificial Intelligence 3176, pages: 169-207, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)
ei
Vert, J., Tsuda, K., Schölkopf, B.
A Primer on Kernel Methods
In Kernel Methods in Computational Biology, pages: 35-70, (Editors: B Schölkopf and K Tsuda and JP Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)
ei
Graf, AAB.
Classification and Feature Extraction in Man and Machine
Biologische Kybernetik, University of Tübingen, Germany, 2004, online publication (phdthesis)
ei
Boucheron, S., Lugosi, G., Bousquet, O.
Concentration Inequalities
In Lecture Notes in Artificial Intelligence 3176, pages: 208-240, (Editors: Bousquet, O., U. von Luxburg and G. Rätsch), Springer, Heidelberg, Germany, 2004 (inbook)
ei
Kashima, H., Tsuda, K., Inokuchi, A.
Kernels for graphs
In pages: 155-170, (Editors: Schoelkopf, B., K. Tsuda and J.P. Vert), MIT Press, Cambridge, MA; USA, 2004 (inbook)
ei
Zien, A.
A primer on molecular biology
In pages: 3-34, (Editors: Schoelkopf, B., K. Tsuda and J. P. Vert), MIT Press, Cambridge, MA, USA, 2004 (inbook)