Header logo is


2020


no image
Dynamic analysis of doubly curved composite panels using lamination parameters and spectral-Tchebychev method

Serhat, G., Anamagh, M. R., Bediz, B., Basdogan, I.

Computers & Structures, 239, pages: 106294, October 2020 (article)

Abstract
Efficient modeling and optimization techniques are required to overcome the high design complexity and computational costs concerning the engineering of composite structures. In this paper, a modeling framework for the dynamic analysis of doubly curved composite panels is developed. Lamination parameters are used to characterize the stiffness properties of the laminate, and the responses are calculated through the two-dimensional spectral-Tchebychev method. The proposed framework combines the computational efficiency advantages of both lamination parameters formulation and spectral-Tchebychev method which is extended for dynamic analysis of curved composite laminates. Compared to the finite element method, the developed model significantly decreases the computation duration, thereby leading to analysis speed-ups up to 40 folds. In the case studies, fundamental frequency contours for the doubly curved composite panels are obtained in lamination parameters space for the first time. The results show that, unlike flat or singly curved laminates, the maximum frequency design points for doubly curved panels can be inside the feasible region of lamination parameters requiring multiple layer angles. The fundamental mode shapes for the maximum frequency designs are also computed to investigate the influence of panel curvatures on the vibration patterns, which can exhibit mode switching phenomenon.

hi

DOI [BibTex]

2020


DOI [BibTex]


Walking Control Based on Step Timing Adaptation
Walking Control Based on Step Timing Adaptation

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

IEEE Transactions on Robotics, 36, pages: 629 - 643, IEEE, June 2020 (article)

Abstract
Step adjustment can improve the gait robustness of biped robots; however, the adaptation of step timing is often neglected as it gives rise to nonconvex problems when optimized over several footsteps. In this article, we argue that it is not necessary to optimize walking over several steps to ensure gait viability and show that it is sufficient to merely select the next step timing and location. Using this insight, we propose a novel walking pattern generator that optimally selects step location and timing at every control cycle. Our approach is computationally simple compared to standard approaches in the literature, yet guarantees that any viable state will remain viable in the future. We propose a swing foot adaptation strategy and integrate the pattern generator with an inverse dynamics controller that does not explicitly control the center of mass nor the foot center of pressure. This is particularly useful for biped robots with limited control authority over their foot center of pressure, such as robots with point feet or passive ankles. Extensive simulations on a humanoid robot with passive ankles demonstrate the capabilities of the approach in various walking situations, including external pushes and foot slippage, and emphasize the importance of step timing adaptation to stabilize walking.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Unifying Lamination Parameters with Spectral-Tchebychev Method for Variable-Stiffness Composite Plate Design

Serhat, G., Bediz, B., Basdogan, I.

Composite Structures, 242(112183), June 2020 (article)

Abstract
This paper describes an efficient framework for the design and optimization of the variable-stiffness composite plates. Equations of motion are solved using a Tchebychev polynomials-based spectral modeling approach that is extended for the classical laminated plate theory. This approach provides highly significant analysis speed-ups with respect to the conventional finite element method. The proposed framework builds on a variable-stiffness laminate design methodology that utilizes lamination parameters for representing the stiffness properties compactly and master node variables for modeling the stiffness variation through distance-based interpolation. The current study improves the existing method by optimizing the locations of the master nodes in addition to their lamination parameter values. The optimization process is promoted by the computationally efficient spectral-Tchebychev solution method. Case studies are performed for maximizing the fundamental frequencies of the plates with different boundary conditions and aspect ratios. The results show that significant improvements can be rapidly achieved compared to optimal constant-stiffness designs by utilizing the developed framework. In addition, the optimization of master node locations resulted in additional improvements in the optimal response values highlighting the importance of including the node positions within the design variables.

hi

DOI [BibTex]

DOI [BibTex]


Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment
Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment

Nam, S., Vardar, Y., Gueorguiev, D., Kuchenbecker, K. J.

Frontiers in Neuroscience, 14(235):1-14, April 2020 (article)

Abstract
One may notice a relatively wide range of tactile sensations even when touching the same hard, flat surface in similar ways. Little is known about the reasons for this variability, so we decided to investigate how the perceptual intensity of light stickiness relates to the physical interaction between the skin and the surface. We conducted a psychophysical experiment in which nine participants actively pressed their finger on a flat glass plate with a normal force close to 1.5 N and detached it after a few seconds. A custom-designed apparatus recorded the contact force vector and the finger contact area during each interaction as well as pre- and post-trial finger moisture. After detaching their finger, participants judged the stickiness of the glass using a nine-point scale. We explored how sixteen physical variables derived from the recorded data correlate with each other and with the stickiness judgments of each participant. These analyses indicate that stickiness perception mainly depends on the pre-detachment pressing duration, the time taken for the finger to detach, and the impulse in the normal direction after the normal force changes sign; finger-surface adhesion seems to build with pressing time, causing a larger normal impulse during detachment and thus a more intense stickiness sensation. We additionally found a strong between-subjects correlation between maximum real contact area and peak pull-off force, as well as between finger moisture and impulse.

hi

link (url) DOI Project Page [BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

ei

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


Learning to Predict Perceptual Distributions of Haptic Adjectives
Learning to Predict Perceptual Distributions of Haptic Adjectives

Richardson, B. A., Kuchenbecker, K. J.

Frontiers in Neurorobotics, 13(116):1-16, Febuary 2020 (article)

Abstract
When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

hi

DOI Project Page [BibTex]


no image
Exercising with Baxter: Preliminary Support for Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Journal of NeuroEngineering and Rehabilitation, 17(19), Febuary 2020 (article)

Abstract
Background: The worldwide population of older adults will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active at home. Methods: Building on related literature as well as guidance from experts in game design, rehabilitation, and physical and occupational therapy, we developed eight human-robot exercise games for the Baxter Research Robot, six of which involve physical human-robot contact. After extensive iteration, these games were tested in an exploratory user study including 20 younger adult and 20 older adult users. Results: Only socially and physically interactive games fell in the highest ranges for pleasantness, enjoyment, engagement, cognitive challenge, and energy level. Our games successfully spanned three different physical, cognitive, and temporal challenge levels. User trust and confidence in Baxter increased significantly between pre- and post-study assessments. Older adults experienced higher exercise, energy, and engagement levels than younger adults, and women rated the robot more highly than men on several survey questions. Conclusions: The results indicate that social-physical exercise with a robot is more pleasant, enjoyable, engaging, cognitively challenging, and energetic than similar interactions that lack physical touch. In addition to this main finding, researchers working in similar areas can build on our design practices, our open-source resources, and the age-group and gender differences that we found.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Self-supervised motion deblurring
Self-supervised motion deblurring

Liu, P., Janai, J., Pollefeys, M., Sattler, T., Geiger, A.

IEEE Robotics and Automation Letters, 2020 (article)

Abstract
Motion blurry images challenge many computer vision algorithms, e.g., feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However, obtaining training data with corresponding sharp and blurry image pairs can be difficult. In this paper, we present a differentiable reblur model for self-supervised motion deblurring, which enables the network to learn from real-world blurry image sequences without relying on sharp images for supervision. Our key insight is that motion cues obtained from consecutive images yield sufficient information to inform the deblurring task. We therefore formulate deblurring as an inverse rendering problem, taking into account the physical image formation process: we first predict two deblurred images from which we estimate the corresponding optical flow. Using these predictions, we re-render the blurred images and minimize the difference with respect to the original blurry inputs. We use both synthetic and real dataset for experimental evaluations. Our experiments demonstrate that self-supervised single image deblurring is really feasible and leads to visually compelling results.

avg

pdf Project Page Blog [BibTex]

pdf Project Page Blog [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

ei

[BibTex]

[BibTex]

2000


no image
Knowledge Discovery in Databases: An Information Retrieval Perspective

Ong, CS.

Malaysian Journal of Computer Science, 13(2):54-63, December 2000 (article)

Abstract
The current trend of increasing capabilities in data generation and collection has resulted in an urgent need for data mining applications, also called knowledge discovery in databases. This paper identifies and examines the issues involved in extracting useful grains of knowledge from large amounts of data. It describes a framework to categorise data mining systems. The author also gives an overview of the issues pertaining to data pre processing, as well as various information gathering methodologies and techniques. The paper covers some popular tools such as classification, clustering, and generalisation. A summary of statistical and machine learning techniques used currently is also provided.

ei

PDF [BibTex]

2000


PDF [BibTex]


no image
A Simple Iterative Approach to Parameter Optimization

Zien, A., Zimmer, R., Lengauer, T.

Journal of Computational Biology, 7(3,4):483-501, November 2000 (article)

Abstract
Various bioinformatics problems require optimizing several different properties simultaneously. For example, in the protein threading problem, a scoring function combines the values for different parameters of possible sequence-to-structure alignments into a single score to allow for unambiguous optimization. In this context, an essential question is how each property should be weighted. As the native structures are known for some sequences, a partial ordering on optimal alignments to other structures, e.g., derived from structural comparisons, may be used to adjust the weights. To resolve the arising interdependence of weights and computed solutions, we propose a heuristic approach: iterating the computation of solutions (here, threading alignments) given the weights and the estimation of optimal weights of the scoring function given these solutions via systematic calibration methods. For our application (i.e., threading), this iterative approach results in structurally meaningful weights that significantly improve performance on both the training and the test data sets. In addition, the optimized parameters show significant improvements on the recognition rate for a grossly enlarged comprehensive benchmark, a modified recognition protocol as well as modified alignment types (local instead of global and profiles instead of single sequences). These results show the general validity of the optimized weights for the given threading program and the associated scoring contributions.

ei

Web [BibTex]

Web [BibTex]


no image
Identification of Drug Target Proteins

Zien, A., Küffner, R., Mevissen, T., Zimmer, R., Lengauer, T.

ERCIM News, 43, pages: 16-17, October 2000 (article)

ei

Web [BibTex]

Web [BibTex]


no image
Engineering Support Vector Machine Kernels That Recognize Translation Initiation Sites

Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.

Bioinformatics, 16(9):799-807, September 2000 (article)

Abstract
Motivation: In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). Results: The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A Meanfield Approach to the Thermodynamics of a Protein-Solvent System with Application to the Oligomerization of the Tumour Suppressor p53.

Noolandi, J., Davison, TS., Vokel, A., Nie, F., Kay, C., Arrowsmith, C.

Proceedings of the National Academy of Sciences of the United States of America, 97(18):9955-9960, August 2000 (article)

ei

Web [BibTex]

Web [BibTex]


no image
New Support Vector Algorithms

Schölkopf, B., Smola, A., Williamson, R., Bartlett, P.

Neural Computation, 12(5):1207-1245, May 2000 (article)

Abstract
We propose a new class of support vector algorithms for regression and classification. In these algorithms, a parameter {nu} lets one effectively control the number of support vectors. While this can be useful in its own right, the parameterization has the additional benefit of enabling us to eliminate one of the other free parameters of the algorithm: the accuracy parameter {epsilon} in the regression case, and the regularization constant C in the classification case. We describe the algorithms, give some theoretical results concerning the meaning and the choice of {nu}, and report experimental results.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Bounds on Error Expectation for Support Vector Machines

Vapnik, V., Chapelle, O.

Neural Computation, 12(9):2013-2036, 2000 (article)

Abstract
We introduce the concept of span of support vectors (SV) and show that the generalization ability of support vector machines (SVM) depends on this new geometrical concept. We prove that the value of the span is always smaller (and can be much smaller) than the diameter of the smallest sphere containing th e support vectors, used in previous bounds. We also demonstate experimentally that the prediction of the test error given by the span is very accurate and has direct application in model selection (choice of the optimal parameters of the SVM)

ei

GZIP [BibTex]

GZIP [BibTex]