Header logo is


2020


no image
Kernel Conditional Moment Test via Maximum Moment Restriction

Muandet, K., Jitkrittum, W., Kübler, J. M.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), August 2020 (conference) Accepted

ei

[BibTex]

2020


[BibTex]


no image
Bayesian Online Prediction of Change Points

Agudelo-España, D., Gomez-Gonzalez, S., Bauer, S., Schölkopf, B., Peters, J.

Proceedings of the 36th International Conference on Uncertainty in Artificial Intelligence (UAI), August 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Algorithmic Recourse: from Counterfactual Explanations to Interventions

Karimi, A., Schölkopf, B., Valera, I.

37th International Conference on Machine Learning (ICML), July 2020 (conference) Submitted

ei plg

[BibTex]

[BibTex]


no image
Model-Agnostic Counterfactual Explanations for Consequential Decisions

Karimi, A., Barthe, G., Balle, B., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei plg

arXiv [BibTex]

arXiv [BibTex]


no image
A Continuous-time Perspective for Modeling Acceleration in Riemannian Optimization

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), June 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


no image
Kernel Conditional Density Operators

Schuster, I., Mollenhauer, M., Klus, S., Muandet, K.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research, June 2020 (conference) Accepted

ei

[BibTex]

[BibTex]


Walking Control Based on Step Timing Adaptation
Walking Control Based on Step Timing Adaptation

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

IEEE Transactions on Robotics, 36, pages: 629 - 643, IEEE, June 2020 (article)

Abstract
Step adjustment can improve the gait robustness of biped robots; however, the adaptation of step timing is often neglected as it gives rise to nonconvex problems when optimized over several footsteps. In this article, we argue that it is not necessary to optimize walking over several steps to ensure gait viability and show that it is sufficient to merely select the next step timing and location. Using this insight, we propose a novel walking pattern generator that optimally selects step location and timing at every control cycle. Our approach is computationally simple compared to standard approaches in the literature, yet guarantees that any viable state will remain viable in the future. We propose a swing foot adaptation strategy and integrate the pattern generator with an inverse dynamics controller that does not explicitly control the center of mass nor the foot center of pressure. This is particularly useful for biped robots with limited control authority over their foot center of pressure, such as robots with point feet or passive ankles. Extensive simulations on a humanoid robot with passive ankles demonstrate the capabilities of the approach in various walking situations, including external pushes and foot slippage, and emphasize the importance of step timing adaptation to stabilize walking.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Kernel Mean Embedding Approach to Reducing Conservativeness in Stochastic Programming and Control

Zhu, J., Diehl, M., Schölkopf, B.

2nd Annual Conference on Learning for Dynamics and Control (L4DC), June 2020 (conference) Accepted

ei

arXiv [BibTex]

arXiv [BibTex]


Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment
Physical Variables Underlying Tactile Stickiness during Fingerpad Detachment

Nam, S., Vardar, Y., Gueorguiev, D., Kuchenbecker, K. J.

Frontiers in Neuroscience, 14(235):1-14, April 2020 (article)

Abstract
One may notice a relatively wide range of tactile sensations even when touching the same hard, flat surface in similar ways. Little is known about the reasons for this variability, so we decided to investigate how the perceptual intensity of light stickiness relates to the physical interaction between the skin and the surface. We conducted a psychophysical experiment in which nine participants actively pressed their finger on a flat glass plate with a normal force close to 1.5 N and detached it after a few seconds. A custom-designed apparatus recorded the contact force vector and the finger contact area during each interaction as well as pre- and post-trial finger moisture. After detaching their finger, participants judged the stickiness of the glass using a nine-point scale. We explored how sixteen physical variables derived from the recorded data correlate with each other and with the stickiness judgments of each participant. These analyses indicate that stickiness perception mainly depends on the pre-detachment pressing duration, the time taken for the finger to detach, and the impulse in the normal direction after the normal force changes sign; finger-surface adhesion seems to build with pressing time, causing a larger normal impulse during detachment and thus a more intense stickiness sensation. We additionally found a strong between-subjects correlation between maximum real contact area and peak pull-off force, as well as between finger moisture and impulse.

hi

link (url) DOI Project Page [BibTex]


no image
Disentangling Factors of Variations Using Few Labels

Locatello, F., Tschannen, M., Bauer, S., Rätsch, G., Schölkopf, B., Bachem, O.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


no image
Mixed-curvature Variational Autoencoders

Skopek, O., Ganea, O., Becigneul, G.

8th International Conference on Learning Representations (ICLR), April 2020 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals
Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals

Laumann, F., von Kügelgen, J., Barahona, M.

ICLR 2020 Workshop "Tackling Climate Change with Machine Learning", April 2020 (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

ei ps

arXiv [BibTex]

arXiv [BibTex]


no image
On Mutual Information Maximization for Representation Learning

Tschannen, M., Djolonga, J., Rubenstein, P. K., Gelly, S., Lucic, M.

8th International Conference on Learning Representations (ICLR), April 2020 (conference) Accepted

ei

arXiv link (url) [BibTex]

arXiv link (url) [BibTex]


Towards causal generative scene models via competition of experts
Towards causal generative scene models via competition of experts

von Kügelgen*, J., Ustyuzhaninov*, I., Gehler, P., Bethge, M., Schölkopf, B.

ICLR 2020 Workshop "Causal Learning for Decision Making", April 2020, *equal contribution (conference)

ei

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Adaptation and Robust Learning of Probabilistic Movement Primitives

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

IEEE Transactions on Robotics, 36(2):366-379, IEEE, March 2020 (article)

ei

arXiv DOI Project Page [BibTex]

arXiv DOI Project Page [BibTex]


Learning to Predict Perceptual Distributions of Haptic Adjectives
Learning to Predict Perceptual Distributions of Haptic Adjectives

Richardson, B. A., Kuchenbecker, K. J.

Frontiers in Neurorobotics, 13(116):1-16, Febuary 2020 (article)

Abstract
When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

hi

DOI Project Page [BibTex]


no image
Exercising with Baxter: Preliminary Support for Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Journal of NeuroEngineering and Rehabilitation, 17(19), Febuary 2020 (article)

Abstract
Background: The worldwide population of older adults will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active at home. Methods: Building on related literature as well as guidance from experts in game design, rehabilitation, and physical and occupational therapy, we developed eight human-robot exercise games for the Baxter Research Robot, six of which involve physical human-robot contact. After extensive iteration, these games were tested in an exploratory user study including 20 younger adult and 20 older adult users. Results: Only socially and physically interactive games fell in the highest ranges for pleasantness, enjoyment, engagement, cognitive challenge, and energy level. Our games successfully spanned three different physical, cognitive, and temporal challenge levels. User trust and confidence in Baxter increased significantly between pre- and post-study assessments. Older adults experienced higher exercise, energy, and engagement levels than younger adults, and women rated the robot more highly than men on several survey questions. Conclusions: The results indicate that social-physical exercise with a robot is more pleasant, enjoyable, engaging, cognitively challenging, and energetic than similar interactions that lack physical touch. In addition to this main finding, researchers working in similar areas can build on our design practices, our open-source resources, and the age-group and gender differences that we found.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Computationally Tractable Riemannian Manifolds for Graph Embeddings

Cruceru, C., Becigneul, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


no image
A Real-Robot Dataset for Assessing Transferability of Learned Dynamics Models

Agudelo-España, D., Zadaianchuk, A., Wenk, P., Garg, A., Akpo, J., Grimminger, F., Viereck, J., Naveau, M., Righetti, L., Martius, G., Krause, A., Schölkopf, B., Bauer, S., Wüthrich, M.

IEEE International Conference on Robotics and Automation (ICRA), 2020 (conference) Accepted

am al ei mg

Project Page PDF [BibTex]

Project Page PDF [BibTex]


no image
An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Kübler, J. M., Arrasmith, A., Cincio, L., Coles, P. J.

Quantum, 4, pages: 263, 2020 (article)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Practical Accelerated Optimization on Riemannian Manifolds

F Alimisis, F., Orvieto, A., Becigneul, G., Lucchi, A.

37th International Conference on Machine Learning (ICML), 2020 (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Fair Decisions Despite Imperfect Predictions

Kilbertus, N., Gomez Rodriguez, M., Schölkopf, B., Muandet, K., Valera, I.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) Accepted

ei plg

[BibTex]

[BibTex]


no image
Counterfactual Mean Embedding

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukatat, S.

Journal of Machine Learning Research, 2020 (article) Accepted

ei

[BibTex]

[BibTex]


no image
Constant Curvature Graph Convolutional Networks

Bachmann*, G., Becigneul*, G., Ganea, O.

37th International Conference on Machine Learning (ICML), 2020, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


no image
Divide-and-Conquer Monte Carlo Tree Search for goal directed planning

Parascandolo*, G., Buesing*, L., Merel, J., Hasenclever, L., Aslanides, J., Hamrick, J. B., Heess, N., Neitz, A., Weber, T.

2020, *equal contribution (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]

2011


no image
Statistical estimation for optimization problems on graphs

Langovoy, M., Sra, S.

In pages: 1-6, NIPS Workshop on Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback , December 2011 (inproceedings)

Abstract
Large graphs abound in machine learning, data mining, and several related areas. A useful step towards analyzing such graphs is that of obtaining certain summary statistics — e.g., or the expected length of a shortest path between two nodes, or the expected weight of a minimum spanning tree of the graph, etc. These statistics provide insight into the structure of a graph, and they can help predict global properties of a graph. Motivated thus, we propose to study statistical properties of structured subgraphs (of a given graph), in particular, to estimate the expected objective function value of a combinatorial optimization problem over these subgraphs. The general task is very difficult, if not unsolvable; so for concreteness we describe a more specific statistical estimation problem based on spanning trees. We hope that our position paper encourages others to also study other types of graphical structures for which one can prove nontrivial statistical estimates.

ei

PDF Web [BibTex]

2011


PDF Web [BibTex]


no image
On the discardability of data in Support Vector Classification problems

Del Favero, S., Varagnolo, D., Dinuzzo, F., Schenato, L., Pillonetto, G.

In pages: 3210-3215, IEEE, Piscataway, NJ, USA, 50th IEEE Conference on Decision and Control and European Control Conference (CDC - ECC), December 2011 (inproceedings)

Abstract
We analyze the problem of data sets reduction for support vector classification. The work is also motivated by distributed problems, where sensors collect binary measurements at different locations moving inside an environment that needs to be divided into a collection of regions labeled in two different ways. The scope is to let each agent retain and exchange only those measurements that are mostly informative for the collective reconstruction of the decision boundary. For the case of separable classes, we provide the exact conditions and an efficient algorithm to determine if an element in the training set can become a support vector when new data arrive. The analysis is then extended to the non-separable case deriving a sufficient discardability condition and a general data selection scheme for classification. Numerical experiments relative to the distributed problem show that the proposed procedure allows the agents to exchange a small amount of the collected data to obtain a highly predictive decision boundary.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Causal Inference on Discrete Data using Additive Noise Models

Peters, J., Janzing, D., Schölkopf, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12):2436-2450, December 2011 (article)

Abstract
Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. The case of two random variables is particularly challenging since no (conditional) independences can be exploited. Recent methods that are based on additive noise models suggest the following principle: Whenever the joint distribution {\bf P}^{(X,Y)} admits such a model in one direction, e.g., Y=f(X)+N, N \perp\kern-6pt \perp X, but does not admit the reversed model X=g(Y)+\tilde{N}, \tilde{N} \perp\kern-6pt \perp Y, one infers the former direction to be causal (i.e., X\rightarrow Y). Up to now, these approaches only dealt with continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work, we extend the notion of additive noise models to these cases. We prove that it almost never occurs that additive noise models can be fit in both directions. We further propose an efficient algorithm that is able to perform this way of causal inference on finite samples of discrete variables. We show that the algorithm works on both synthetic and real data sets.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Spontaneous epigenetic variation in the Arabidopsis thaliana methylome

Becker, C., Hagmann, J., Müller, J., Koenig, D., Stegle, O., Borgwardt, K., Weigel, D.

Nature, 480(7376):245-249, December 2011 (article)

Abstract
Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation1, 2. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles3, 4, and these can influence the expression of nearby genes1, 2. However, to understand their role in evolution5, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor6. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations7. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation8. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Information, learning and falsification

Balduzzi, D.

In pages: 1-4, NIPS Philosophy and Machine Learning Workshop, December 2011 (inproceedings)

Abstract
There are (at least) three approaches to quantifying information. The first, algorithmic information or Kolmogorov complexity, takes events as strings and, given a universal Turing machine, quantifies the information content of a string as the length of the shortest program producing it [1]. The second, Shannon information, takes events as belonging to ensembles and quantifies the information resulting from observing the given event in terms of the number of alternate events that have been ruled out [2]. The third, statistical learning theory, has introduced measures of capacity that control (in part) the expected risk of classifiers [3]. These capacities quantify the expectations regarding future data that learning algorithms embed into classifiers. Solomonoff and Hutter have applied algorithmic information to prove remarkable results on universal induction. Shannon information provides the mathematical foundation for communication and coding theory. However, both approaches have shortcomings. Algorithmic information is not computable, severely limiting its practical usefulness. Shannon information refers to ensembles rather than actual events: it makes no sense to compute the Shannon information of a single string – or rather, there are many answers to this question depending on how a related ensemble is constructed. Although there are asymptotic results linking algorithmic and Shannon information, it is unsatisfying that there is such a large gap – a difference in kind – between the two measures. This note describes a new method of quantifying information, effective information, that links algorithmic information to Shannon information, and also links both to capacities arising in statistical learning theory [4, 5]. After introducing the measure, we show that it provides a non-universal analog of Kolmogorov complexity. We then apply it to derive basic capacities in statistical learning theory: empirical VC-entropy and empirical Rademacher complexity. A nice byproduct of our approach is an interpretation of the explanatory power of a learning algorithm in terms of the number of hypotheses it falsifies [6], counted in two different ways for the two capacities. We also discuss how effective information relates to information gain, Shannon and mutual information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A general linear non-Gaussian state-space model: Identifiability, identification, and applications

Zhang, K., Hyvärinen, A.

In JMLR Workshop and Conference Proceedings Volume 20, pages: 113-128, (Editors: Hsu, C.-N. , W.S. Lee ), MIT Press, Cambridge, MA, USA, 3rd Asian Conference on Machine Learning (ACML), November 2011 (inproceedings)

Abstract
State-space modeling provides a powerful tool for system identification and prediction. In linear state-space models the data are usually assumed to be Gaussian and the models have certain structural constraints such that they are identifiable. In this paper we propose a non-Gaussian state-space model which does not have such constraints. We prove that this model is fully identifiable. We then propose an efficient two-step method for parameter estimation: one first extracts the subspace of the latent processes based on the temporal information of the data, and then performs multichannel blind deconvolution, making use of both the temporal information and non-Gaussianity. We conduct a series of simulations to illustrate the performance of the proposed method. Finally, we apply the proposed model and parameter estimation method on real data, including major world stock indices and magnetoencephalography (MEG) recordings. Experimental results are encouraging and show the practical usefulness of the proposed model and method.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary correction of optical aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

In pages: 659-666 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Learning low-rank output kernels

Dinuzzo, F., Fukumizu, K.

In JMLR Workshop and Conference Proceedings Volume 20, pages: 181-196, (Editors: Hsu, C.-N. , W.S. Lee), JMLR, Cambridge, MA, USA, 3rd Asian Conference on Machine Learning (ACML) , November 2011 (inproceedings)

Abstract
Output kernel learning techniques allow to simultaneously learn a vector-valued function and a positive semidefinite matrix which describes the relationships between the outputs. In this paper, we introduce a new formulation that imposes a low-rank constraint on the output kernel and operates directly on a factor of the kernel matrix. First, we investigate the connection between output kernel learning and a regularization problem for an architecture with two layers. Then, we show that a variety of methods such as nuclear norm regularized regression, reduced-rank regression, principal component analysis, and low rank matrix approximation can be seen as special cases of the output kernel learning framework. Finally, we introduce a block coordinate descent strategy for learning low-rank output kernels.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
HHfrag: HMM-based fragment detection using HHpred

Kalev, I., Habeck, M.

Bioinformatics, 27(22):3110-3116, November 2011 (article)

Abstract
Motivation: Over the last decade, both static and dynamic fragment libraries for protein structure prediction have been introduced. The former are built from clusters in either sequence or structure space and aim to extract a universal structural alphabet. The latter are tailored for a particular query protein sequence and aim to provide local structural templates that need to be assembled in order to build the full-length structure. Results: Here, we introduce HHfrag, a dynamic HMM-based fragment search method built on the profile–profile comparison tool HHpred. We show that HHfrag provides advantages over existing fragment assignment methods in that it: (i) improves the precision of the fragments at the expense of a minor loss in sequence coverage; (ii) detects fragments of variable length (6–21 amino acid residues); (iii) allows for gapped fragments and (iv) does not assign fragments to regions where there is no clear sequence conservation. We illustrate the usefulness of fragments detected by HHfrag on targets from most recent CASP.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Reward-Weighted Regression with Sample Reuse for Direct Policy Search in Reinforcement Learning

Hachiya, H., Peters, J., Sugiyama, M.

Neural Computation, 23(11):2798-2832, November 2011 (article)

Abstract
Direct policy search is a promising reinforcement learning framework, in particular for controlling continuous, high-dimensional systems. Policy search often requires a large number of samples for obtaining a stable policy update estimator, and this is prohibitive when the sampling cost is expensive. In this letter, we extend an expectation-maximization-based policy search method so that previously collected samples can be efficiently reused. The usefulness of the proposed method, reward-weighted regression with sample reuse (R), is demonstrated through robot learning experiments.

ei

Web DOI [BibTex]


no image
Model Learning in Robotics: a Survey

Nguyen-Tuong, D., Peters, J.

Cognitive Processing, 12(4):319-340, November 2011 (article)

Abstract
Models are among the most essential tools in robotics, such as kinematics and dynamics models of the robot's own body and controllable external objects. It is widely believed that intelligent mammals also rely on internal models in order to generate their actions. However, while classical robotics relies on manually generated models that are based on human insights into physics, future autonomous, cognitive robots need to be able to automatically generate models that are based on information which is extracted from the data streams accessible to the robot. In this paper, we survey the progress in model learning with a strong focus on robot control on a kinematic as well as dynamical level. Here, a model describes essential information about the behavior of the environment and the in uence of an agent on this environment. In the context of model based learning control, we view the model from three di fferent perspectives. First, we need to study the di erent possible model learning architectures for robotics. Second, we discuss what kind of problems these architecture and the domain of robotics imply for the applicable learning methods. From this discussion, we deduce future directions of real-time learning algorithms. Third, we show where these scenarios have been used successfully in several case studies.

ei

PDF [BibTex]

PDF [BibTex]


no image
Fast removal of non-uniform camera shake

Hirsch, M., Schuler, C., Harmeling, S., Schölkopf, B.

In pages: 463-470 , (Editors: DN Metaxas and L Quan and A Sanfeliu and LJ Van Gool), IEEE, Piscataway, NJ, USA, 13th IEEE International Conference on Computer Vision (ICCV), November 2011 (inproceedings)

Abstract
Camera shake leads to non-uniform image blurs. State-of-the-art methods for removing camera shake model the blur as a linear combination of homographically transformed versions of the true image. While this is conceptually interesting, the resulting algorithms are computationally demanding. In this paper we develop a forward model based on the efficient filter flow framework, incorporating the particularities of camera shake, and show how an efficient algorithm for blur removal can be obtained. Comprehensive comparisons on a number of real-world blurry images show that our approach is not only substantially faster, but it also leads to better deblurring results.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Stability Condition for Teleoperation System with Packet Loss

Hong, A., Cho, JH., Lee, DY.

In pages: 760-761, 2011 KSME Annual Fall Conference, November 2011 (inproceedings)

Abstract
This paper focuses on the stability condition of teleoperation system where there is a packet loss in communication channel. Communication channel between master and slave cause packet loss and it obviously leads to a performance degradation and instability of teleoperation system. We consider two-channel control architecture for teleoperation system, and control inputs to remote site are produced by position of master and slave. In this paper, teleoperation system is modeled in discrete domain to include packet loss process. Also, the stability condition for teleoperation system with packet loss is discussed with input-to-state stability. Finally, the stability condition is presented in LMI approach.

ei

[BibTex]

[BibTex]


no image
FaST linear mixed models for genome-wide association studies

Lippert, C., Listgarten, J., Liu, Y., Kadie, CM., Davidson, RI., Heckerman, D.

Nature Methods, 8(10):833–835, October 2011 (article)

Abstract
We describe factored spectrally transformed linear mixed models (FaST-LMM), an algorithm for genome-wide association studies (GWAS) that scales linearly with cohort size in both run time and memory use. On Wellcome Trust data for 15,000 individuals, FaST-LMM ran an order of magnitude faster than current efficient algorithms. Our algorithm can analyze data for 120,000 individuals in just a few hours, whereas current algorithms fail on data for even 20,000 individuals (http://mscompbio.codeplex.com/).

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The effect of noise correlations in populations of diversely tuned neurons

Ecker, A., Berens, P., Tolias, A., Bethge, M.

Journal of Neuroscience, 31(40):14272-14283, October 2011 (article)

Abstract
The amount of information encoded by networks of neurons critically depends on the correlation structure of their activity. Neurons with similar stimulus preferences tend to have higher noise correlations than others. In homogeneous populations of neurons, this limited range correlation structure is highly detrimental to the accuracy of a population code. Therefore, reduced spike count correlations under attention, after adaptation, or after learning have been interpreted as evidence for a more efficient population code. Here, we analyze the role of limited range correlations in more realistic, heterogeneous population models. We use Fisher information and maximum-likelihood decoding to show that reduced correlations do not necessarily improve encoding accuracy. In fact, in populations with more than a few hundred neurons, increasing the level of limited range correlations can substantially improve encoding accuracy. We found that this improvement results from a decrease in noise entropy that is associated with increasing correlations if the marginal distributions are unchanged. Surprisingly, for constant noise entropy and in the limit of large populations, the encoding accuracy is independent of both structure and magnitude of noise correlations.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Attenuation correction in MR-BrainPET with segmented T1-weighted MR images of the patient’s head: A comparative study with CT

Wagenknecht, G., Rota Kops, E., Mantlik, F., Fried, E., Pilz, T., Hautzel, H., Tellmann, L., Pichler, B., Herzog, H.

In pages: 2261-2266 , IEEE, Piscataway, NJ, USA, IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), October 2011 (inproceedings)

Abstract
Our method for attenuation correction (AC) in MR-BrainPET with segmented T1-weighted MR images of the pa-tient's head was applied to data from different MR-BrainPET scanners (Jülich, Tübingen) and compared to CT-based results. The study objectives presented in this paper are twofold. The first objective is to examine if the segmentation method developed for and successfully applied to 3D MP-RAGE data can also be used to segment other T1-weighted MR data such as 3D FLASH data. The second aim is to show if the similarity of segmented MR-based (SBA) and CT-based AC (CBA) obtained at HR+ PET can also be confirmed for BrainPET for which the new AC method is intended for. In order to reach the first objective, 14 segmented MR data sets (three 3D MP-RAGE data sets from Jülich and eleven 3D FLASH data sets from Tubingen) were compared to the resp. CT data based on the Dice coefficient and scatter plots. For bone, a CT threshold HU>;500 was applied. Dice coefficients (mean±std) for the upper cranial part of the skull, the skull above cavities, and in the caudal part including the cerebellum are 0.73±0.1, 0.79±0.04, and 0.49±0.02 for the Jülich data and 0.7U0.1, 0.72±0.1, and 0.60±0.05 for the Tubingen data. To reach the second aim, SBA and CBA were compared for six subjects based on VOI (AAL atlas) analysis. Mean absolute relative difference (maRD) values are maRD(JUFVBWl-FDG): 0.99%±0.83%, maRD(JüFVBW2-FDG): 0.90%±0.89%, and maRD(JUEP-Fluma- zenil): 1.85%±1.25% for the Jülich data and maRD(TuTP02- FDG): 2.99%±1.65%, maRD(TuNP01-FDG): 5.37%±2.29%, and maRD(TuNP02-FDG): 6.52%±1.69% for the three best-segmented Tübingen data sets. The results show similar segmentation quality for both Tl- weighted MR sequence types. The application to AC in BrainPET - hows a high similarity to CT-based AC if the standardized ACF value for bone used in SBA is in good accordance to the bone density of the patient in question.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Analysis of Fixed-Point and Coordinate Descent Algorithms for Regularized Kernel Methods

Dinuzzo, F.

IEEE Transactions on Neural Networks, 22(10):1576-1587, October 2011 (article)

Abstract
In this paper, we analyze the convergence of two general classes of optimization algorithms for regularized kernel methods with convex loss function and quadratic norm regularization. The first methodology is a new class of algorithms based on fixed-point iterations that are well-suited for a parallel implementation and can be used with any convex loss function. The second methodology is based on coordinate descent, and generalizes some techniques previously proposed for linear support vector machines. It exploits the structure of additively separable loss functions to compute solutions of line searches in closed form. The two methodologies are both very easy to implement. In this paper, we also show how to remove non-differentiability of the objective functional by exactly reformulating a convex regularization problem as an unconstrained differentiable stabilization problem.

ei

Web DOI [BibTex]

Web DOI [BibTex]