Header logo is


2018


Gait learning for soft microrobots controlled by light fields
Gait learning for soft microrobots controlled by light fields

Rohr, A. V., Trimpe, S., Marco, A., Fischer, P., Palagi, S.

In International Conference on Intelligent Robots and Systems (IROS) 2018, pages: 6199-6206, International Conference on Intelligent Robots and Systems 2018, October 2018 (inproceedings)

Abstract
Soft microrobots based on photoresponsive materials and controlled by light fields can generate a variety of different gaits. This inherent flexibility can be exploited to maximize their locomotion performance in a given environment and used to adapt them to changing environments. However, because of the lack of accurate locomotion models, and given the intrinsic variability among microrobots, analytical control design is not possible. Common data-driven approaches, on the other hand, require running prohibitive numbers of experiments and lead to very sample-specific results. Here we propose a probabilistic learning approach for light-controlled soft microrobots based on Bayesian Optimization (BO) and Gaussian Processes (GPs). The proposed approach results in a learning scheme that is highly data-efficient, enabling gait optimization with a limited experimental budget, and robust against differences among microrobot samples. These features are obtained by designing the learning scheme through the comparison of different GP priors and BO settings on a semisynthetic data set. The developed learning scheme is validated in microrobot experiments, resulting in a 115% improvement in a microrobot’s locomotion performance with an experimental budget of only 20 tests. These encouraging results lead the way toward self-adaptive microrobotic systems based on lightcontrolled soft microrobots and probabilistic learning control.

ics pf

arXiv IEEE Xplore DOI Project Page [BibTex]

2018


arXiv IEEE Xplore DOI Project Page [BibTex]


Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets
Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets

Qiu, T., Palagi, S., Sachs, J., Fischer, P.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 3595-3600, May 2018 (inproceedings)

Abstract
Wireless actuation by magnetic fields allows for the operation of untethered miniaturized devices, e.g. in biomedical applications. Nevertheless, generating large controlled forces over relatively large distances is challenging. Magnetic torques are easier to generate and control, but they are not always suitable for the tasks at hand. Moreover, strong magnetic fields are required to generate a sufficient torque, which are difficult to achieve with electromagnets. Here, we demonstrate a soft miniaturized actuator that transforms an externally applied magnetic torque into a controlled linear force. We report the design, fabrication and characterization of both the actuator and the magnetic field generator. We show that the magnet assembly, which is based on a set of rotating permanent magnets, can generate strong controlled oscillating fields over a relatively large workspace. The actuator, which is 3D-printed, can lift a load of more than 40 times its weight. Finally, we show that the actuator can be further miniaturized, paving the way towards strong, wirelessly powered microactuators.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Travelling Ultrasonic Wave Enhances Keyclick Sensation

Gueorguiev, D., Kaci, A., Amberg, M., Giraud, F., Lemaire-Semail, B.

In Haptics: Science, Technology, and Applications, pages: 302-312, Springer International Publishing, Cham, 2018 (inproceedings)

Abstract
A realistic keyclick sensation is a serious challenge for haptic feedback since vibrotactile rendering faces the limitation of the absence of contact force as experienced on physical buttons. It has been shown that creating a keyclick sensation is possible with stepwise ultrasonic friction modulation. However, the intensity of the sensation is limited by the impedance of the fingertip and by the absence of a lateral force component external to the finger. In our study, we compare this technique to rendering with an ultrasonic travelling wave, which exerts a lateral force on the fingertip. For both techniques, participants were asked to report the detection (or not) of a keyclick during a forced choice one interval procedure. In experiment 1, participants could press the surface as many time as they wanted for a given trial. In experiment 2, they were constrained to press only once. The results show a lower perceptual threshold for travelling waves. Moreover, participants pressed less times per trial and exerted smaller normal force on the surface. The subjective quality of the sensation was found similar for both techniques. In general, haptic feedback based on travelling ultrasonic waves is promising for applications without lateral motion of the finger.

hi

[BibTex]

[BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Exploring Fingers’ Limitation of Texture Density Perception on Ultrasonic Haptic Displays

Kalantari, F., Gueorguiev, D., Lank, E., Bremard, N., Grisoni, L.

In Haptics: Science, Technology, and Applications, pages: 354-365, Springer International Publishing, Cham, 2018 (inproceedings)

Abstract
Recent research in haptic feedback is motivated by the crucial role that tactile perception plays in everyday touch interactions. In this paper, we describe psychophysical experiments to investigate the perceptual threshold of individual fingers on both the right and left hand of right-handed participants using active dynamic touch for spatial period discrimination of both sinusoidal and square-wave gratings on ultrasonic haptic touchscreens. Both one-finger and multi-finger touch were studied and compared. Our results indicate that users' finger identity (index finger, middle finger, etc.) significantly affect the perception of both gratings in the case of one-finger exploration. We show that index finger and thumb are the most sensitive in all conditions whereas little finger followed by ring are the least sensitive for haptic perception. For multi-finger exploration, the right hand was found to be more sensitive than the left hand for both gratings. Our findings also demonstrate similar perception sensitivity between multi-finger exploration and the index finger of users' right hands (i.e. dominant hand in our study), while significant difference was found between single and multi-finger perception sensitivity for the left hand.

hi

[BibTex]

[BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2013


no image
Virtual Robotization of the Human Body via Data-Driven Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

In Proc. International Conference on Advances in Computer Entertainment Technology (ACE), 8253, pages: 109-122, Lecture Notes in Computer Science, Springer, Enschede, Netherlands, 2013, Oral presentation given by Kurihara. Best Paper Silver Award (inproceedings)

hi

[BibTex]

2013


[BibTex]


no image
Virtual Robotization of the Human Body Using Vibration Recording, Modeling and Rendering

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

In Proc. Virtual Reality Society of Japan Annual Conference, Osaka, Japan, sep 2013, Paper written in Japanese. Presentation given by Kurihara (inproceedings)

hi

[BibTex]

[BibTex]


no image
Virtual Alteration of Body Material by Reality-Based Periodic Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Sato, M., Fukushima, S., Kuchenbecker, K. J., Kajimoto, H.

In Proc. JSME Robotics and Mechatronics Conference (ROBOMEC), Tsukuba, Japan, May 2013, Paper written in Japanese. Poster presentation given by {Kurihara} (inproceedings)

hi

[BibTex]

[BibTex]


no image
The Design and Field Observation of a Haptic Notification System for Oral Presentations

Tam, D., MacLean, K. E., McGrenere, J., Kuchenbecker, K. J.

In Proc. SIGCHI Conference on Human Factors in Computing Systems, pages: 1689-1698, Paris, France, May 2013, Oral presentation given by Tam (inproceedings)

hi

[BibTex]

[BibTex]


no image
Using Robotic Exploratory Procedures to Learn the Meaning of Haptic Adjectives

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Robotics and Automation, pages: 3048-3055, Karlsruhe, Germany, May 2013, Oral presentation given by Chu. Best Cognitive Robotics Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Instrument contact vibrations are a construct-valid measure of technical skill in Fundamentals of Laparoscopic Surgery Training Tasks

Gomez, E. D., Aggarwal, R., McMahan, W., Koch, E., Hashimoto, D. A., Darzi, A., Murayama, K. M., Dumon, K. R., Williams, N. N., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Association for Surgical Education, Orlando, Florida, USA, 2013, Oral presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamic Simulation of Tool-Mediated Texture Interaction

McDonald, C. G., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 307-312, Daejeon, South Korea, April 2013, Oral presentation given by McDonald (inproceedings)

hi

[BibTex]

[BibTex]


no image
Generating Haptic Texture Models From Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Goodman, B. E., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 295-300, Daejeon, South Korea, April 2013, Oral presentation given by Culbertson. Finalist for Best Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
A practical System for Recording Instrument Contacts and Collisions During Transoral Robotic Surgery

Gomez, E. D., Weinstein, G. S., O’Malley, J. B. W., McMahan, W., Chen, L., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Triological Society, Orlando, Florida, USA, April 2013, Poster presentation given by Gomez (inproceedings)

hi

[BibTex]

[BibTex]


no image
AGILITY – Dynamic Full Body Locomotion and Manipulation with Autonomous Legged Robots

Hutter, M., Bloesch, M., Buchli, J., Semini, C., Bazeille, S., Righetti, L., Bohg, J.

In 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-4, IEEE, Linköping, Sweden, 2013 (inproceedings)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Self-tuning in Sliding Mode Control of High-Precision Motion Systems
Self-tuning in Sliding Mode Control of High-Precision Motion Systems

Heertjes, M. F., Vardar, Y.

In IFAC Proceedings Volumes, 46(5):13 - 19, 2013, 6th IFAC Symposium on Mechatronic Systems (inproceedings)

Abstract
In high-precision motion systems, set-point tracking often comes with the problem of overshoot, hence poor settling behavior. To avoid overshoot, PD control (thus without using an integrator) is preferred over PID control. However, PD control gives rise to steady-state error in view of the constant disturbances acting on the system. To deal with both overshoot and steady-state error, a sliding mode controller with saturated integrator is studied. For large servo signals the controller is switched to PD mode as to constrain the integrator buffer and therefore the overshoot. For small servo signals the controller switches to PID mode as to avoid steady-state error. The tuning of the switching parameters will be done automatically with the aim to optimize the settling behavior. The sliding mode controller will be tested on a high-precision motion system.

hi

heertjes_ifac2013 link (url) DOI [BibTex]

heertjes_ifac2013 link (url) DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Practical System For Recording Instrument Interactions During Live Robotic Surgery

McMahan, W., Gomez, E. D., Chen, L., Bark, K., Nappo, J. C., Koch, E. I., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

In Proc. Medicine Meets Virtual Reality, 2013, Poster presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2012


no image
Surgical Instrument Vibrations are a Construct-Valid Measure of Technical Skill in Robotic Peg Transfer and Suturing Tasks

Bark, K., Gomez, E. D., Rivera, C., McMahan, W., Remington, A., Murayama, K., Lee, D. I., Dumon, K., Williams, N., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 50-51, London, England, July 2012, Oral presentation given by Bark (inproceedings)

hi

[BibTex]

2012


[BibTex]


no image
Spectral Subtraction of Robot Motion Noise for Improved Vibrotactile Event Detection

McMahan, W., Kuchenbecker, K. J.

In Haptics: Perception, Devices, Mobility, and Communication: Proc. EuroHaptics, Part I, 7282, pages: 326-337, Lecture Notes in Computer Science, Springer, Tampere, Finland, June 2012, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Refined Methods for Creating Realistic Haptic Virtual Textures from Tool-Mediated Contact Acceleration Data

Culbertson, H., Romano, J. M., Castillo, P., Mintz, M., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 385-391, Vancouver, Canada, March 2012, Poster presentation given by Culbertson (inproceedings)

hi

[BibTex]

[BibTex]


no image
VerroTouch: Detection of Instrument Vibrations for Haptic Feedback and Skill Assessment in Robotic Surgery

Gomez, E. D., Bark, K., McMahan, W., Rivera, C., Remington, A., Lee, D. I., Kuchenbecker, K. J.

In Proc. Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), San Diego, California, USA, March 2012, Emerging Technology Poster presentation given by Gomez. Poster available at \href{http://thesagesmeeting.org/}{http://thesagesmeeting.org/} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Using Accelerometers to Localize Tactile Contact Events on a Robot Arm

McMahan, W., Romano, J. M., Kuchenbecker, K. J.

In Proc. Workshop on Advances in Tactile Sensing and Touch-Based Human-Robot Interaction, ACM/IEEE International Conference on Human-Robot Interaction, Boston, Massachusetts, March 2012, Oral presentation given by McMahan (inproceedings)

hi

[BibTex]

[BibTex]


no image
Recreating the feel of the human chest in a CPR manikin via programmable pneumatic damping

Stanley, A. A., Healey, S. K., Maltese, M. R., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 37-44, Vancouver, Canada, March 2012, Oral presentation given by Stanley (inproceedings)

hi

[BibTex]

[BibTex]


no image
HALO: Haptic Alerts for Low-hanging Obstacles in White Cane Navigation

Wang, Y., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 527-532, Vancouver, Canada, March 2012, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
VerroTeach: Visuo-audio-haptic Training for Dental Caries Detection

Maggio, M. P., Parajon, R., Kuchenbecker, K. J.

In Proc. Annual American Dental Educator’s Association (ADEA) Conference, Orlando, Florida, 2012, Oral presentation given by Maggio (inproceedings)

hi

[BibTex]

[BibTex]


no image
A Data-Driven Method for Determining Natural Human-Robot Motion Mappings in Teleoperation

Pierce, R. M., Kuchenbecker, K. J.

In Proc. IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 169-176, Rome, Italy, 2012, Poster presentation given by Pierce (inproceedings)

hi

[BibTex]

[BibTex]


no image
Encoding of Periodic and their Transient Motions by a Single Dynamic Movement Primitive

Ernesti, J., Righetti, L., Do, M., Asfour, T., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 57-64, IEEE, Osaka, Japan, November 2012 (inproceedings)

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Force Control Policies for Compliant Robotic Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In ICML’12 Proceedings of the 29th International Coference on International Conference on Machine Learning, pages: 49-50, Edinburgh, Scotland, 2012 (inproceedings)

am mg

[BibTex]

[BibTex]


no image
Low Bitrate Source-filter Model Based Compression of Vibrotactile Texture Signals in Haptic Teleoperation

Chaudhari, R., Çizmeci, B., Kuchenbecker, K. J., Choi, S., Steinbach, E.

In Proc. ACM Multimedia, pages: 409-418, Nara, Japan, 2012, Oral presentation given by {Chaudhari} (inproceedings)

hi

[BibTex]

[BibTex]


no image
Robotic Learning of Haptic Adjectives Through Physical Interaction

McMahon, I., Chu, V., Riano, L., McDonald, C. G., He, Q. (., Perez-Tejada, J. M., Arrigo, M., Fitter, N., Nappo, J., Darrell, T., Kuchenbecker, K. J.

In Proc. IROS Workshop on Advances in Tactile Sensing and Touch-based Human-robot Interaction, Vilamoura, Algarve, Portugal, 2012, Oral presentation given by McMahon (inproceedings)

hi

[BibTex]

[BibTex]


no image
Quadratic programming for inverse dynamics with optimal distribution of contact forces

Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 538-543, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
In this contribution we propose an inverse dynamics controller for a humanoid robot that exploits torque redundancy to minimize any combination of linear and quadratic costs in the contact forces and the commands. In addition the controller satisfies linear equality and inequality constraints in the contact forces and the commands such as torque limits, unilateral contacts or friction cones limits. The originality of our approach resides in the formulation of the problem as a quadratic program where we only need to solve for the control commands and where the contact forces are optimized implicitly. Furthermore, we do not need a structured representation of the dynamics of the robot (i.e. an explicit computation of the inertia matrix). It is in contrast with existing methods based on quadratic programs. The controller is then robust to uncertainty in the estimation of the dynamics model and the optimization is fast enough to be implemented in high bandwidth torque control loops that are increasingly available on humanoid platforms. We demonstrate properties of our controller with simulations of a human size humanoid robot.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Towards Associative Skill Memories

Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.

In 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012), pages: 309-315, IEEE, Osaka, Japan, November 2012 (inproceedings)

Abstract
Movement primitives as basis of movement planning and control have become a popular topic in recent years. The key idea of movement primitives is that a rather small set of stereotypical movements should suffice to create a large set of complex manipulation skills. An interesting side effect of stereotypical movement is that it also creates stereotypical sensory events, e.g., in terms of kinesthetic variables, haptic variables, or, if processed appropriately, visual variables. Thus, a movement primitive executed towards a particular object in the environment will associate a large number of sensory variables that are typical for this manipulation skill. These association can be used to increase robustness towards perturbations, and they also allow failure detection and switching towards other behaviors. We call such movement primitives augmented with sensory associations Associative Skill Memories (ASM). This paper addresses how ASMs can be acquired by imitation learning and how they can create robust manipulation skill by determining subsequent ASMs online to achieve a particular manipulation goal. Evaluation for grasping and manipulation with a Barrett WAM/Hand illustrate our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Template-based learning of grasp selection

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 2379-2384, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
The ability to grasp unknown objects is an important skill for personal robots, which has been addressed by many present and past research projects, but still remains an open problem. A crucial aspect of grasping is choosing an appropriate grasp configuration, i.e. the 6d pose of the hand relative to the object and its finger configuration. Finding feasible grasp configurations for novel objects, however, is challenging because of the huge variety in shape and size of these objects. Moreover, possible configurations also depend on the specific kinematics of the robotic arm and hand in use. In this paper, we introduce a new grasp selection algorithm able to find object grasp poses based on previously demonstrated grasps. Assuming that objects with similar shapes can be grasped in a similar way, we associate to each demonstrated grasp a grasp template. The template is a local shape descriptor for a possible grasp pose and is constructed using 3d information from depth sensors. For each new object to grasp, the algorithm then finds the best grasp candidate in the library of templates. The grasp selection is also able to improve over time using the information of previous grasp attempts to adapt the ranking of the templates. We tested the algorithm on two different platforms, the Willow Garage PR2 and the Barrett WAM arm which have very different hands. Our results show that the algorithm is able to find good grasp configurations for a large set of objects from a relatively small set of demonstrations, and does indeed improve its performance over time.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Probabilistic depth image registration incorporating nonvisual information

Wüthrich, M., Pastor, P., Righetti, L., Billard, A., Schaal, S.

In 2012 IEEE International Conference on Robotics and Automation, pages: 3637-3644, IEEE, Saint Paul, USA, 2012 (inproceedings)

Abstract
In this paper, we derive a probabilistic registration algorithm for object modeling and tracking. In many robotics applications, such as manipulation tasks, nonvisual information about the movement of the object is available, which we will combine with the visual information. Furthermore we do not only consider observations of the object, but we also take space into account which has been observed to not be part of the object. Furthermore we are computing a posterior distribution over the relative alignment and not a point estimate as typically done in for example Iterative Closest Point (ICP). To our knowledge no existing algorithm meets these three conditions and we thus derive a novel registration algorithm in a Bayesian framework. Experimental results suggest that the proposed methods perform favorably in comparison to PCL [1] implementations of feature mapping and ICP, especially if nonvisual information is available.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2011


no image
Planning manipulation and grasping tasks with a redundant arm

Gray, S. R., Romano, J. M., Brindza, J., Kim, S., Kuchenbecker, K. J., Kumar, V.

In Proc. ASME International Design Engineering Technical Conferences, Washington, D.C., USA, 2011, DETC2011-47453. Oral presentation given by Gray (inproceedings)

hi

[BibTex]

2011


[BibTex]


no image
Lessons in Using Vibrotactile Feedback to Guide Fast Arm Motions

Bark, K., Khanna, P., Irwin, R., Kapur, P., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 355-360, Istanbul, Turkey, June 2011, Poster presentation given by Bark (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptically Assisted Golf Putting Through a Planar Four-Cable System

Huang, P. Y., Kunkel, J. A., Brindza, J., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 191-196, Istanbul, Turkey, June 2011, Poster presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Design of Body-Grounded Tactile Actuators for Playback of Human Physical Contact

Stanley, A. A., Kuchenbecker, K. J.

In Proc. IEEE World Haptics Conference, pages: 563-568, Istanbul, Turkey, June 2011, Poster presentation given by Stanley (inproceedings)

hi

[BibTex]

[BibTex]


no image
Tool Vibration Feedback May Help Expert Robotic Surgeons Apply Less Force During Manipulation Tasks

McMahan, W., Bark, K., Gewirtz, J., Standish, D., Martin, P. D., Kunkel, J. A., Lilavois, M., Wedmid, A., Lee, D. I., Kuchenbecker, K. J.

In Proc. Hamlyn Symposium on Medical Robotics, pages: 37-38, London, England, June 2011, Oral Presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
Haptography: Capturing and Recreating the Rich Feel of Real Surfaces

Kuchenbecker, K. J., Romano, J. M., McMahan, W.

In Proceedings of the International Symposium on Robotics Research (ISRR), 70, pages: 245-260, Springer Tracts in Advanced Robotics, Springer, 2011, Oral presentation given by Kuchenbecker in August of 2009 (inproceedings)

hi

[BibTex]

[BibTex]


no image
Learning Force Control Policies for Compliant Manipulation

Kalakrishnan, M., Righetti, L., Pastor, P., Schaal, S.

In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 4639-4644, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Developing robots capable of fine manipulation skills is of major importance in order to build truly assistive robots. These robots need to be compliant in their actuation and control in order to operate safely in human environments. Manipulation tasks imply complex contact interactions with the external world, and involve reasoning about the forces and torques to be applied. Planning under contact conditions is usually impractical due to computational complexity, and a lack of precise dynamics models of the environment. We present an approach to acquiring manipulation skills on compliant robots through reinforcement learning. The initial position control policy for manipulation is initialized through kinesthetic demonstration. We augment this policy with a force/torque profile to be controlled in combination with the position trajectories. We use the Policy Improvement with Path Integrals (PI2) algorithm to learn these force/torque profiles by optimizing a cost function that measures task success. We demonstrate our approach on the Barrett WAM robot arm equipped with a 6-DOF force/torque sensor on two different manipulation tasks: opening a door with a lever door handle, and picking up a pen off the table. We show that the learnt force control policies allow successful, robust execution of the tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Control of legged robots with optimal distribution of contact forces

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 11th IEEE-RAS International Conference on Humanoid Robots, pages: 318-324, IEEE, Bled, Slovenia, 2011 (inproceedings)

Abstract
The development of agile and safe humanoid robots require controllers that guarantee both high tracking performance and compliance with the environment. More specifically, the control of contact interaction is of crucial importance for robots that will actively interact with their environment. Model-based controllers such as inverse dynamics or operational space control are very appealing as they offer both high tracking performance and compliance. However, while widely used for fully actuated systems such as manipulators, they are not yet standard controllers for legged robots such as humanoids. Indeed such robots are fundamentally different from manipulators as they are underactuated due to their floating-base and subject to switching contact constraints. In this paper we present an inverse dynamics controller for legged robots that use torque redundancy to create an optimal distribution of contact constraints. The resulting controller is able to minimize, given a desired motion, any quadratic cost of the contact constraints at each instant of time. In particular we show how this can be used to minimize tangential forces during locomotion, therefore significantly improving the locomotion of legged robots on difficult terrains. In addition to the theoretical result, we present simulations of a humanoid and a quadruped robot, as well as experiments on a real quadruped robot that demonstrate the advantages of the controller.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Motion Primitive Goals for Robust Manipulation

Stulp, F., Theodorou, E., Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 325-331, IEEE, San Francisco, USA, sep 2011 (inproceedings)

Abstract
Applying model-free reinforcement learning to manipulation remains challenging for several reasons. First, manipulation involves physical contact, which causes discontinuous cost functions. Second, in manipulation, the end-point of the movement must be chosen carefully, as it represents a grasp which must be adapted to the pose and shape of the object. Finally, there is uncertainty in the object pose, and even the most carefully planned movement may fail if the object is not at the expected position. To address these challenges we 1) present a simplified, computationally more efficient version of our model-free reinforcement learning algorithm PI2; 2) extend PI2 so that it simultaneously learns shape parameters and goal parameters of motion primitives; 3) use shape and goal learning to acquire motion primitives that are robust to object pose uncertainty. We evaluate these contributions on a manipulation platform consisting of a 7-DOF arm with a 4-DOF hand.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Inverse Dynamics Control of Floating-Base Robots with External Constraints: a Unified View

Righetti, L., Buchli, J., Mistry, M., Schaal, S.

In 2011 IEEE International Conference on Robotics and Automation, pages: 1085-1090, IEEE, Shanghai, China, 2011 (inproceedings)

Abstract
Inverse dynamics controllers and operational space controllers have proved to be very efficient for compliant control of fully actuated robots such as fixed base manipulators. However legged robots such as humanoids are inherently different as they are underactuated and subject to switching external contact constraints. Recently several methods have been proposed to create inverse dynamics controllers and operational space controllers for these robots. In an attempt to compare these different approaches, we develop a general framework for inverse dynamics control and show that these methods lead to very similar controllers. We are then able to greatly simplify recent whole-body controllers based on operational space approaches using kinematic projections, bringing them closer to efficient practical implementations. We also generalize these controllers such that they can be optimal under an arbitrary quadratic cost in the commands.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]