Header logo is


2019


Thumb xl teaser singlecol
Attacking Optical Flow

Ranjan, A., Janai, J., Geiger, A., Black, M. J.

In International Conference on Computer Vision, November 2019 (inproceedings)

Abstract
Deep neural nets achieve state-of-the-art performance on the problem of optical flow estimation. Since optical flow is used in several safety-critical applications like self-driving cars, it is important to gain insights into the robustness of those techniques. Recently, it has been shown that adversarial attacks easily fool deep neural networks to misclassify objects. The robustness of optical flow networks to adversarial attacks, however, has not been studied so far. In this paper, we extend adversarial patch attacks to optical flow networks and show that such attacks can compromise their performance. We show that corrupting a small patch of less than 1% of the image size can significantly affect optical flow estimates. Our attacks lead to noisy flow estimates that extend significantly beyond the region of the attack, in many cases even completely erasing the motion of objects in the scene. While networks using an encoder-decoder architecture are very sensitive to these attacks, we found that networks using a spatial pyramid architecture are less affected. We analyse the success and failure of attacking both architectures by visualizing their feature maps and comparing them to classical optical flow techniques which are robust to these attacks. We also demonstrate that such attacks are practical by placing a printed pattern into real scenes.

avg ps

Video Project Page Paper Supplementary Material link (url) [BibTex]

2019


Video Project Page Paper Supplementary Material link (url) [BibTex]


Thumb xl occ flow
Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics

Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.

International Conference on Computer Vision, October 2019 (conference)

Abstract
Deep learning based 3D reconstruction techniques have recently achieved impressive results. However, while state-of-the-art methods are able to output complex 3D geometry, it is not clear how to extend these results to time-varying topologies. Approaches treating each time step individually lack continuity and exhibit slow inference, while traditional 4D reconstruction methods often utilize a template model or discretize the 4D space at fixed resolution. In this work, we present Occupancy Flow, a novel spatio-temporal representation of time-varying 3D geometry with implicit correspondences. Towards this goal, we learn a temporally and spatially continuous vector field which assigns a motion vector to every point in space and time. In order to perform dense 4D reconstruction from images or sparse point clouds, we combine our method with a continuous 3D representation. Implicitly, our model yields correspondences over time, thus enabling fast inference while providing a sound physical description of the temporal dynamics. We show that our method can be used for interpolation and reconstruction tasks, and demonstrate the accuracy of the learned correspondences. We believe that Occupancy Flow is a promising new 4D representation which will be useful for a variety of spatio-temporal reconstruction tasks.

avg

pdf poster suppmat code Project page video blog [BibTex]


Thumb xl tex felds
Texture Fields: Learning Texture Representations in Function Space

Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.

International Conference on Computer Vision, October 2019 (conference)

Abstract
In recent years, substantial progress has been achieved in learning-based reconstruction of 3D objects. At the same time, generative models were proposed that can generate highly realistic images. However, despite this success in these closely related tasks, texture reconstruction of 3D objects has received little attention from the research community and state-of-the-art methods are either limited to comparably low resolution or constrained experimental setups. A major reason for these limitations is that common representations of texture are inefficient or hard to interface for modern deep learning techniques. In this paper, we propose Texture Fields, a novel texture representation which is based on regressing a continuous 3D function parameterized with a neural network. Our approach circumvents limiting factors like shape discretization and parameterization, as the proposed texture representation is independent of the shape representation of the 3D object. We show that Texture Fields are able to represent high frequency texture and naturally blend with modern deep learning techniques. Experimentally, we find that Texture Fields compare favorably to state-of-the-art methods for conditional texture reconstruction of 3D objects and enable learning of probabilistic generative models for texturing unseen 3D models. We believe that Texture Fields will become an important building block for the next generation of generative 3D models.

avg

pdf suppmat video poster blog Project Page [BibTex]


Thumb xl screenshot 2019 04 08 at 16.22.00
Effect of Remote Masking on Detection of Electrovibration

Jamalzadeh, M., Güçlü, B., Vardar, Y., Basdogan, C.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 229-234, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Masking has been used to study human perception of tactile stimuli, including those created on haptic touch screens. Earlier studies have investigated the effect of in-site masking on tactile perception of electrovibration. In this study, we investigated whether it is possible to change detection threshold of electrovibration at fingertip of index finger via remote masking, i.e. by applying a (mechanical) vibrotactile stimulus on the proximal phalanx of the same finger. The masking stimuli were generated by a voice coil (Haptuator). For eight participants, we first measured the detection thresholds for electrovibration at the fingertip and for vibrotactile stimuli at the proximal phalanx. Then, the vibrations on the skin were measured at four different locations on the index finger of subjects to investigate how the mechanical masking stimulus propagated as the masking level was varied. Finally, electrovibration thresholds measured in the presence of vibrotactile masking stimuli. Our results show that vibrotactile masking stimuli generated sub-threshold vibrations around fingertip, and hence did not mechanically interfere with the electrovibration stimulus. However, there was a clear psychophysical masking effect due to central neural processes. Electrovibration absolute threshold increased approximately 0.19 dB for each dB increase in the masking level.

hi

DOI [BibTex]

DOI [BibTex]


no image
High-Fidelity Multiphysics Finite Element Modeling of Finger-Surface Interactions with Tactile Feedback

Serhat, G., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
In this study, we develop a high-fidelity finite element (FE) analysis framework that enables multiphysics simulation of the human finger in contact with a surface that is providing tactile feedback. We aim to elucidate a variety of physical interactions that can occur at finger-surface interfaces, including contact, friction, vibration, and electrovibration. We also develop novel FE-based methods that will allow prediction of nonconventional features such as real finger-surface contact area and finger stickiness. We envision using the developed computational tools for efficient design and optimization of haptic devices by replacing expensive and lengthy experimental procedures with high-fidelity simulation.

hi

[BibTex]

[BibTex]


no image
Fingertip Friction Enhances Perception of Normal Force Changes

Gueorguiev, D., Lambert, J., Thonnard, J., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
Using a force-controlled robotic platform, we tested the human perception of positive and negative modulations in normal force during passive dynamic touch, which also induced a strong related change in the finger-surface lateral force. In a two-alternative forced-choice task, eleven participants had to detect brief variations in the normal force compared to a constant controlled pre-stimulation force of 1 N and report whether it had increased or decreased. The average 75% just noticeable difference (JND) was found to be around 0.25 N for detecting the peak change and 0.30 N for correctly reporting the increase or the decrease. Interestingly, the friction coefficient of a subject’s fingertip positively correlated with his or her performance at detecting the change and reporting its direction, which suggests that humans may use the lateral force as a sensory cue to perceive variations in the normal force.

hi

[BibTex]

[BibTex]


Thumb xl image
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl pocketrendering
Inflatable Haptic Sensor for the Torso of a Hugging Robot

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
During hugs, humans naturally provide and intuit subtle non-verbal cues that signify the strength and duration of an exchanged hug. Personal preferences for this close interaction may vary greatly between people; robots do not currently have the abilities to perceive or understand these preferences. This work-in-progress paper discusses designing, building, and testing a novel inflatable torso that can simultaneously soften a robot and act as a tactile sensor to enable more natural and responsive hugging. Using PVC vinyl, a microphone, and a barometric pressure sensor, we created a small test chamber to demonstrate a proof of concept for the full torso. While contacting the chamber in several ways common in hugs (pat, squeeze, scratch, and rub), we recorded data from the two sensors. The preliminary results suggest that the complementary haptic sensing channels allow us to detect coarse and fine contacts typically experienced during hugs, regardless of user hand placement.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl figure1
Understanding the Pull-off Force of the Human Fingerpad

Nam, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Tokyo, Japan, July 2019 (misc)

Abstract
To understand the adhesive force that occurs when a finger pulls off of a smooth surface, we built an apparatus to measure the fingerpad’s moisture, normal force, and real contact area over time during interactions with a glass plate. We recorded a total of 450 trials (45 interactions by each of ten human subjects), capturing a wide range of values across the aforementioned variables. The experimental results showed that the pull-off force increases with larger finger contact area and faster detachment rate. Additionally, moisture generally increases the contact area of the finger, but too much moisture can restrict the increase in the pull-off force.

hi

[BibTex]

[BibTex]


Thumb xl h a image3
The Haptician and the Alphamonsters

Forte, M. P., L’Orsa, R., Mohan, M., Nam, S., Kuchenbecker, K. J.

Student Innovation Challenge on Implementing Haptics in Virtual Reality Environment presented at the IEEE World Haptics Conference, Tokyo, Japan, July 2019, Maria Paola Forte, Rachael L'Orsa, Mayumi Mohan, and Saekwang Nam contributed equally to this publication (misc)

Abstract
Dysgraphia is a neurological disorder characterized by writing disabilities that affects between 7% and 15% of children. It presents itself in the form of unfinished letters, letter distortion, inconsistent letter size, letter collision, etc. Traditional therapeutic exercises require continuous assistance from teachers or occupational therapists. Autonomous partial or full haptic guidance can produce positive results, but children often become bored with the repetitive nature of such activities. Conversely, virtual rehabilitation with video games represents a new frontier for occupational therapy due to its highly motivational nature. Virtual reality (VR) adds an element of novelty and entertainment to therapy, thus motivating players to perform exercises more regularly. We propose leveraging the HTC VIVE Pro and the EXOS Wrist DK2 to create an immersive spellcasting “exergame” (exercise game) that helps motivate children with dysgraphia to improve writing fluency.

hi

Student Innovation Challenge – Virtual Reality [BibTex]

Student Innovation Challenge – Virtual Reality [BibTex]


Thumb xl screenshot 2019 04 08 at 16.08.19
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl lv
Taking a Deeper Look at the Inverse Compositional Algorithm

Lv, Z., Dellaert, F., Rehg, J. M., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
In this paper, we provide a modern synthesis of the classic inverse compositional algorithm for dense image alignment. We first discuss the assumptions made by this well-established technique, and subsequently propose to relax these assumptions by incorporating data-driven priors into this model. More specifically, we unroll a robust version of the inverse compositional algorithm and replace multiple components of this algorithm using more expressive models whose parameters we train in an end-to-end fashion from data. Our experiments on several challenging 3D rigid motion estimation tasks demonstrate the advantages of combining optimization with learning-based techniques, outperforming the classic inverse compositional algorithm as well as data-driven image-to-pose regression approaches.

avg

pdf suppmat Video Project Page Poster [BibTex]

pdf suppmat Video Project Page Poster [BibTex]


Thumb xl mots
MOTS: Multi-Object Tracking and Segmentation

Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A., Leibe, B.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
This paper extends the popular task of multi-object tracking to multi-object tracking and segmentation (MOTS). Towards this goal, we create dense pixel-level annotations for two existing tracking datasets using a semi-automatic annotation procedure. Our new annotations comprise 65,213 pixel masks for 977 distinct objects (cars and pedestrians) in 10,870 video frames. For evaluation, we extend existing multi-object tracking metrics to this new task. Moreover, we propose a new baseline method which jointly addresses detection, tracking, and segmentation with a single convolutional network. We demonstrate the value of our datasets by achieving improvements in performance when training on MOTS annotations. We believe that our datasets, metrics and baseline will become a valuable resource towards developing multi-object tracking approaches that go beyond 2D bounding boxes.

avg

pdf suppmat Project Page Poster Video Project Page [BibTex]

pdf suppmat Project Page Poster Video Project Page [BibTex]


Thumb xl behl
PointFlowNet: Learning Representations for Rigid Motion Estimation from Point Clouds

Behl, A., Paschalidou, D., Donne, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Despite significant progress in image-based 3D scene flow estimation, the performance of such approaches has not yet reached the fidelity required by many applications. Simultaneously, these applications are often not restricted to image-based estimation: laser scanners provide a popular alternative to traditional cameras, for example in the context of self-driving cars, as they directly yield a 3D point cloud. In this paper, we propose to estimate 3D motion from such unstructured point clouds using a deep neural network. In a single forward pass, our model jointly predicts 3D scene flow as well as the 3D bounding box and rigid body motion of objects in the scene. While the prospect of estimating 3D scene flow from unstructured point clouds is promising, it is also a challenging task. We show that the traditional global representation of rigid body motion prohibits inference by CNNs, and propose a translation equivariant representation to circumvent this problem. For training our deep network, a large dataset is required. Because of this, we augment real scans from KITTI with virtual objects, realistically modeling occlusions and simulating sensor noise. A thorough comparison with classic and learning-based techniques highlights the robustness of the proposed approach.

avg

pdf suppmat Project Page Poster Video [BibTex]

pdf suppmat Project Page Poster Video [BibTex]


Thumb xl liao
Connecting the Dots: Learning Representations for Active Monocular Depth Estimation

Riegler, G., Liao, Y., Donne, S., Koltun, V., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
We propose a technique for depth estimation with a monocular structured-light camera, \ie, a calibrated stereo set-up with one camera and one laser projector. Instead of formulating the depth estimation via a correspondence search problem, we show that a simple convolutional architecture is sufficient for high-quality disparity estimates in this setting. As accurate ground-truth is hard to obtain, we train our model in a self-supervised fashion with a combination of photometric and geometric losses. Further, we demonstrate that the projected pattern of the structured light sensor can be reliably separated from the ambient information. This can then be used to improve depth boundaries in a weakly supervised fashion by modeling the joint statistics of image and depth edges. The model trained in this fashion compares favorably to the state-of-the-art on challenging synthetic and real-world datasets. In addition, we contribute a novel simulator, which allows to benchmark active depth prediction algorithms in controlled conditions.

avg

pdf suppmat Poster Project Page [BibTex]

pdf suppmat Poster Project Page [BibTex]


Thumb xl motorized device
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI [BibTex]


Thumb xl donne
Learning Non-volumetric Depth Fusion using Successive Reprojections

Donne, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Given a set of input views, multi-view stereopsis techniques estimate depth maps to represent the 3D reconstruction of the scene; these are fused into a single, consistent, reconstruction -- most often a point cloud. In this work we propose to learn an auto-regressive depth refinement directly from data. While deep learning has improved the accuracy and speed of depth estimation significantly, learned MVS techniques remain limited to the planesweeping paradigm. We refine a set of input depth maps by successively reprojecting information from neighbouring views to leverage multi-view constraints. Compared to learning-based volumetric fusion techniques, an image-based representation allows significantly more detailed reconstructions; compared to traditional point-based techniques, our method learns noise suppression and surface completion in a data-driven fashion. Due to the limited availability of high-quality reconstruction datasets with ground truth, we introduce two novel synthetic datasets to (pre-)train our network. Our approach is able to improve both the output depth maps and the reconstructed point cloud, for both learned and traditional depth estimation front-ends, on both synthetic and real data.

avg

pdf suppmat Project Page Video Poster blog [BibTex]

pdf suppmat Project Page Video Poster blog [BibTex]


Thumb xl superquadrics parsing
Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids

Paschalidou, D., Ulusoy, A. O., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Abstracting complex 3D shapes with parsimonious part-based representations has been a long standing goal in computer vision. This paper presents a learning-based solution to this problem which goes beyond the traditional 3D cuboid representation by exploiting superquadrics as atomic elements. We demonstrate that superquadrics lead to more expressive 3D scene parses while being easier to learn than 3D cuboid representations. Moreover, we provide an analytical solution to the Chamfer loss which avoids the need for computational expensive reinforcement learning or iterative prediction. Our model learns to parse 3D objects into consistent superquadric representations without supervision. Results on various ShapeNet categories as well as the SURREAL human body dataset demonstrate the flexibility of our model in capturing fine details and complex poses that could not have been modelled using cuboids.

avg

Project Page Poster suppmat pdf Video blog handout [BibTex]

Project Page Poster suppmat pdf Video blog handout [BibTex]


Thumb xl s ban outdoors 1   small
Explorations of Shape-Changing Haptic Interfaces for Blind and Sighted Pedestrian Navigation

Spiers, A., Kuchenbecker, K. J.

pages: 6, Workshop paper (6 pages) presented at the CHI 2019 Workshop on Hacking Blind Navigation, May 2019 (misc) Accepted

Abstract
Since the 1960s, technologists have worked to develop systems that facilitate independent navigation by vision-impaired (VI) pedestrians. These devices vary in terms of conveyed information and feedback modality. Unfortunately, many such prototypes never progress beyond laboratory testing. Conversely, smartphone-based navigation systems for sighted pedestrians have grown in robustness and capabilities, to the point of now being ubiquitous. How can we leverage the success of sighted navigation technology, which is driven by a larger global market, as a way to progress VI navigation systems? We believe one possibility is to make common devices that benefit both VI and sighted individuals, by providing information in a way that does not distract either user from their tasks or environment. To this end we have developed physical interfaces that eschew visual, audio or vibratory feedback, instead relying on the natural human ability to perceive the shape of a handheld object.

hi

[BibTex]

[BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser awesome v2
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl icra 19 2
Real-Time Dense Mapping for Self-Driving Vehicles using Fisheye Cameras

Cui, Z., Heng, L., Yeo, Y. C., Geiger, A., Pollefeys, M., Sattler, T.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
We present a real-time dense geometric mapping algorithm for large-scale environments. Unlike existing methods which use pinhole cameras, our implementation is based on fisheye cameras which have larger field of view and benefit some other tasks including Visual-Inertial Odometry, localization and object detection around vehicles. Our algorithm runs on in-vehicle PCs at 15 Hz approximately, enabling vision-only 3D scene perception for self-driving vehicles. For each synchronized set of images captured by multiple cameras, we first compute a depth map for a reference camera using plane-sweeping stereo. To maintain both accuracy and efficiency, while accounting for the fact that fisheye images have a rather low resolution, we recover the depths using multiple image resolutions. We adopt the fast object detection framework YOLOv3 to remove potentially dynamic objects. At the end of the pipeline, we fuse the fisheye depth images into the truncated signed distance function (TSDF) volume to obtain a 3D map. We evaluate our method on large-scale urban datasets, and results show that our method works well even in complex environments.

avg

pdf video poster Project Page [BibTex]

pdf video poster Project Page [BibTex]


Thumb xl robot
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
DeepOBS: A Deep Learning Optimizer Benchmark Suite

Schneider, F., Balles, L., Hennig, P.

7th International Conference on Learning Representations (ICLR), May 2019 (conference)

ei pn

link (url) [BibTex]

link (url) [BibTex]


Thumb xl icra19 1
Project AutoVision: Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System

Heng, L., Choi, B., Cui, Z., Geppert, M., Hu, S., Kuan, B., Liu, P., Nguyen, R. M. H., Yeo, Y. C., Geiger, A., Lee, G. H., Pollefeys, M., Sattler, T.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Project AutoVision aims to develop localization and 3D scene perception capabilities for a self-driving vehicle. Such capabilities will enable autonomous navigation in urban and rural environments, in day and night, and with cameras as the only exteroceptive sensors. The sensor suite employs many cameras for both 360-degree coverage and accurate multi-view stereo; the use of low-cost cameras keeps the cost of this sensor suite to a minimum. In addition, the project seeks to extend the operating envelope to include GNSS-less conditions which are typical for environments with tall buildings, foliage, and tunnels. Emphasis is placed on leveraging multi-view geometry and deep learning to enable the vehicle to localize and perceive in 3D space. This paper presents an overview of the project, and describes the sensor suite and current progress in the areas of calibration, localization, and perception.

avg

pdf [BibTex]

pdf [BibTex]


no image
Bimanual Wrist-Squeezing Haptic Feedback Changes Speed-Force Tradeoff in Robotic Surgery Training

Cao, E., Machaca, S., Bernard, T., Wolfinger, B., Patterson, Z., Chi, A., Adrales, G. L., Kuchenbecker, K. J., Brown, J. D.

Extended abstract presented as an ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Baltimore, USA, April 2019 (misc) Accepted

hi

[BibTex]

[BibTex]


no image
Interactive Augmented Reality for Robot-Assisted Surgery

Forte, M. P., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Baltimore, Maryland, USA, April 2019 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Fast and Robust Shortest Paths on Manifolds Learned from Data

Arvanitidis, G., Hauberg, S., Hennig, P., Schober, M.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1506-1515, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl 543 figure0 1
Active Probabilistic Inference on Matrices for Pre-Conditioning in Stochastic Optimization

de Roos, F., Hennig, P.

Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), 89, pages: 1448-1457, (Editors: Kamalika Chaudhuri and Masashi Sugiyama), PMLR, April 2019 (conference)

Abstract
Pre-conditioning is a well-known concept that can significantly improve the convergence of optimization algorithms. For noise-free problems, where good pre-conditioners are not known a priori, iterative linear algebra methods offer one way to efficiently construct them. For the stochastic optimization problems that dominate contemporary machine learning, however, this approach is not readily available. We propose an iterative algorithm inspired by classic iterative linear solvers that uses a probabilistic model to actively infer a pre-conditioner in situations where Hessian-projections can only be constructed with strong Gaussian noise. The algorithm is empirically demonstrated to efficiently construct effective pre-conditioners for stochastic gradient descent and its variants. Experiments on problems of comparably low dimensionality show improved convergence. In very high-dimensional problems, such as those encountered in deep learning, the pre-conditioner effectively becomes an automatic learning-rate adaptation scheme, which we also empirically show to work well.

pn ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


Thumb xl screenshot 2019 02 03 at 19.15.13
A Novel Texture Rendering Approach for Electrostatic Displays

Fiedler, T., Vardar, Y.

In Proceedings of International Workshop on Haptic and Audio Interaction Design (HAID), Lille, France, March 2019 (inproceedings)

Abstract
Generating realistic texture feelings on tactile displays using data-driven methods has attracted a lot of interest in the last decade. However, the need for large data storages and transmission rates complicates the use of these methods for the future commercial displays. In this paper, we propose a new texture rendering approach which can compress the texture data signicantly for electrostatic displays. Using three sample surfaces, we first explain how to record, analyze and compress the texture data, and render them on a touchscreen. Then, through psychophysical experiments conducted with nineteen participants, we show that the textures can be reproduced by a signicantly less number of frequency components than the ones in the original signal without inducing perceptual degradation. Moreover, our results indicate that the possible degree of compression is affected by the surface properties.

hi

Fiedler19-HAID-Electrostatic [BibTex]

Fiedler19-HAID-Electrostatic [BibTex]


no image
A Design Tool for Therapeutic Social-Physical Human-Robot Interactions

Mohan, M., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the HRI Pioneers Workshop, Daegu, South Korea, March 2019 (misc) Accepted

Abstract
We live in an aging society; social-physical human-robot interaction has the potential to keep our elderly adults healthy by motivating them to exercise. After summarizing prior work, this paper proposes a tool that can be used to design exercise and therapy interactions to be performed by an upper-body humanoid robot. The interaction design tool comprises a teleoperation system that transmits the operator’s arm motions, head motions and facial expression along with an interface to monitor and assess the motion of the user interacting with the robot. We plan to use this platform to create dynamic and intuitive exercise interactions.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


Thumb xl teaser
Toward Expert-Sourcing of a Haptic Device Repository

Seifi, H., Ip, J., Agrawal, A., Kuchenbecker, K. J., MacLean, K. E.

Glasgow, UK, 2019 (misc)

Abstract
Haptipedia is an online taxonomy, database, and visualization that aims to accelerate ideation of new haptic devices and interactions in human-computer interaction, virtual reality, haptics, and robotics. The current version of Haptipedia (105 devices) was created through iterative design, data entry, and evaluation by our team of experts. Next, we aim to greatly increase the number of devices and keep Haptipedia updated by soliciting data entry and verification from haptics experts worldwide.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.

Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, 2019 (conference)

Abstract
Trajectory optimization (TO) is one of the most powerful tools for generating feasible motions for humanoid robots. However, including uncertainties and stochasticity in the TO problem to generate robust motions can easily lead to intractable problems. Furthermore, since the models used in TO have always some level of abstraction, it can be hard to find a realistic set of uncertainties in the model space. In this paper we leverage a sample-efficient learning technique (Bayesian optimization) to robustify TO for humanoid locomotion. The main idea is to use data from full-body simulations to make the TO stage robust by tuning the cost weights. To this end, we split the TO problem into two phases. The first phase solves a convex optimization problem for generating center of mass (CoM) trajectories based on simplified linear dynamics. The second stage employs iterative Linear-Quadratic Gaussian (iLQG) as a whole-body controller to generate full body control inputs. Then we use Bayesian optimization to find the cost weights to use in the first stage that yields robust performance in the simulation/experiment, in the presence of different disturbance/uncertainties. The results show that the proposed approach is able to generate robust motions for different sets of disturbances and uncertainties.

mg

https://arxiv.org/abs/1907.04616 [BibTex]

https://arxiv.org/abs/1907.04616 [BibTex]


Thumb xl linear solvers stco figure7 1
Probabilistic Linear Solvers: A Unifying View

Bartels, S., Cockayne, J., Ipsen, I. C. F., Hennig, P.

Statistics and Computing, 2019 (article) Accepted

pn

link (url) [BibTex]

link (url) [BibTex]


Thumb xl nova
NoVA: Learning to See in Novel Viewpoints and Domains

Coors, B., Condurache, A. P., Geiger, A.

In 2019 International Conference on 3D Vision (3DV), 2019 International Conference on 3D Vision (3DV), 2019 (inproceedings)

Abstract
Domain adaptation techniques enable the re-use and transfer of existing labeled datasets from a source to a target domain in which little or no labeled data exists. Recently, image-level domain adaptation approaches have demonstrated impressive results in adapting from synthetic to real-world environments by translating source images to the style of a target domain. However, the domain gap between source and target may not only be caused by a different style but also by a change in viewpoint. This case necessitates a semantically consistent translation of source images and labels to the style and viewpoint of the target domain. In this work, we propose the Novel Viewpoint Adaptation (NoVA) model, which enables unsupervised adaptation to a novel viewpoint in a target domain for which no labeled data is available. NoVA utilizes an explicit representation of the 3D scene geometry to translate source view images and labels to the target view. Experiments on adaptation to synthetic and real-world datasets show the benefit of NoVA compared to state-of-the-art domain adaptation approaches on the task of semantic segmentation.

avg

pdf suppmat poster video [BibTex]

pdf suppmat poster video [BibTex]


Thumb xl teaser website
Occupancy Networks: Learning 3D Reconstruction in Function Space

Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, 2019 (inproceedings)

Abstract
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose Occupancy Networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

avg

Code Video pdf suppmat Project Page blog [BibTex]

Code Video pdf suppmat Project Page blog [BibTex]