Header logo is


2016


Thumb xl nonlinear approximate vs exact
A New Perspective and Extension of the Gaussian Filter

Wüthrich, M., Trimpe, S., Garcia Cifuentes, C., Kappler, D., Schaal, S.

The International Journal of Robotics Research, 35(14):1731-1749, December 2016 (article)

Abstract
The Gaussian Filter (GF) is one of the most widely used filtering algorithms; instances are the Extended Kalman Filter, the Unscented Kalman Filter and the Divided Difference Filter. The GF represents the belief of the current state by a Gaussian distribution, whose mean is an affine function of the measurement. We show that this representation can be too restrictive to accurately capture the dependences in systems with nonlinear observation models, and we investigate how the GF can be generalized to alleviate this problem. To this end, we view the GF as the solution to a constrained optimization problem. From this new perspective, the GF is seen as a special case of a much broader class of filters, obtained by relaxing the constraint on the form of the approximate posterior. On this basis, we outline some conditions which potential generalizations have to satisfy in order to maintain the computational efficiency of the GF. We propose one concrete generalization which corresponds to the standard GF using a pseudo measurement instead of the actual measurement. Extending an existing GF implementation in this manner is trivial. Nevertheless, we show that this small change can have a major impact on the estimation accuracy.

am ics

PDF DOI Project Page [BibTex]

2016


PDF DOI Project Page [BibTex]


no image
Predictive and Self Triggering for Event-based State Estimation

Trimpe, S.

In Proceedings of the 55th IEEE Conference on Decision and Control (CDC), pages: 3098-3105, Las Vegas, NV, USA, December 2016 (inproceedings)

am ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Thumb xl toc image
Wireless actuation with functional acoustic surfaces

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Adams, F., Fischer, P.

Appl. Phys. Lett., 109(19):191602, November 2016, APL Editor's pick. APL News. (article)

Abstract
Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant microcavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of similar to 0.45mN is measured on a 4 x 4 mm(2) functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 x 2.6 x 5 mm(3) in size and generates a stall torque of similar to 0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

pf

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Using Probabilistic Movement Primitives for Striking Movements

Gomez-Gonzalez, S., Neumann, G., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 502-508, November 2016 (conference)

am ei

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2019 01 07 at 11.54.16
Jointly Learning Trajectory Generation and Hitting Point Prediction in Robot Table Tennis

Huang, Y., Büchler, D., Koc, O., Schölkopf, B., Peters, J.

16th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pages: 650-655, November 2016 (conference)

am ei

final link (url) DOI Project Page [BibTex]

final link (url) DOI Project Page [BibTex]


Thumb xl toc image
Nanomotors

Alarcon-Correa, M., Walker (Schamel), D., Qiu, T., Fischer, P.

Eur. Phys. J.-Special Topics, 225(11-12):2241-2254, November 2016 (article)

Abstract
This minireview discusses whether catalytically active macromolecules and abiotic nanocolloids, that are smaller than motile bacteria, can self-propel. Kinematic reversibility at low Reynolds number demands that self-propelling colloids must break symmetry. Methods that permit the synthesis and fabrication of Janus nanocolloids are therefore briefly surveyed, as well as means that permit the analysis of the nanocolloids' motion. Finally, recent work is reviewed which shows that nanoagents are small enough to penetrate the complex inhomogeneous polymeric network of biological fluids and gels, which exhibit diverse rheological behaviors.

pf

DOI [BibTex]

DOI [BibTex]


no image
The Role of Measurement Uncertainty in Optimal Control for Contact Interactions
Workshop on the Algorithmic Foundations of Robotics, pages: 22, November 2016 (conference)

Abstract
Stochastic Optimal Control (SOC) typically considers noise only in the process model, i.e. unknown disturbances. However, in many robotic applications that involve interaction with the environment, such as locomotion and manipulation, uncertainty also comes from lack of pre- cise knowledge of the world, which is not an actual disturbance. We de- velop a computationally efficient SOC algorithm, based on risk-sensitive control, that takes into account uncertainty in the measurements. We include the dynamics of an observer in such a way that the control law explicitly depends on the current measurement uncertainty. We show that high measurement uncertainty leads to low impedance behaviors, a result in contrast with the effects of process noise variance that creates stiff behaviors. Simulation results on a simple 2D manipulator show that our controller can create better interaction with the environment under uncertain contact locations than traditional SOC approaches.

am

arXiv [BibTex]

arXiv [BibTex]


Thumb xl toc image
Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots

Palagi, S., Mark, A. G., Reigh, S. Y., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Sanchez-Castillo, A., Kapernaum, N., Giesselmann, F., Wiersma, D. S., Lauga, E., Fischer, P.

Nature Materials, 15(6):647–653, November 2016, Max Planck press release, Nature News & Views. (article)

Abstract
Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

pf

Video - Soft photo Micro-Swimmer DOI [BibTex]

Video - Soft photo Micro-Swimmer DOI [BibTex]


Thumb xl img
Learning Where to Search Using Visual Attention

Kloss, A., Kappler, D., Lensch, H. P. A., Butz, M. V., Schaal, S., Bohg, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, October 2016 (conference)

Abstract
One of the central tasks for a household robot is searching for specific objects. It does not only require localizing the target object but also identifying promising search locations in the scene if the target is not immediately visible. As computation time and hardware resources are usually limited in robotics, it is desirable to avoid expensive visual processing steps that are exhaustively applied over the entire image. The human visual system can quickly select those image locations that have to be processed in detail for a given task. This allows us to cope with huge amounts of information and to efficiently deploy the limited capacities of our visual system. In this paper, we therefore propose to use human fixation data to train a top-down saliency model that predicts relevant image locations when searching for specific objects. We show that the learned model can successfully prune bounding box proposals without rejecting the ground truth object locations. In this aspect, the proposed model outperforms a model that is trained only on the ground truth segmentations of the target object instead of fixation data.

am

Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl oxfordlight
Parameter Learning for Improving Binary Descriptor Matching

Sankaran, B., Ramalingam, S., Taguchi, Y.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2016 (inproceedings)

Abstract
Binary descriptors allow fast detection and matching algorithms in computer vision problems. Though binary descriptors can be computed at almost two orders of magnitude faster than traditional gradient based descriptors, they suffer from poor matching accuracy in challenging conditions. In this paper we propose three improvements for binary descriptors in their computation and matching that enhance their performance in comparison to traditional binary and non-binary descriptors without compromising their speed. This is achieved by learning some weights and threshold parameters that allow customized matching under some variations such as lighting and viewpoint. Our suggested improvements can be easily applied to any binary descriptor. We demonstrate our approach on the ORB (Oriented FAST and Rotated BRIEF) descriptor and compare its performance with the traditional ORB and SIFT descriptors on a wide variety of datasets. In all instances, our enhancements outperform standard ORB and is comparable to SIFT.

am

[BibTex]

[BibTex]


no image
A New Trajectory Generation Framework in Robotic Table Tennis

Koc, O., Maeda, G., Peters, J.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages: 3750-3756, October 2016 (conference)

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl gadde
Superpixel Convolutional Networks using Bilateral Inceptions

Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, Springer, 14th European Conference on Computer Vision, October 2016 (inproceedings)

Abstract
In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception modules between the last CNN (1 × 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.

am ps

pdf supplementary poster Project Page Project Page [BibTex]

pdf supplementary poster Project Page Project Page [BibTex]


Thumb xl thumb
Barrista - Caffe Well-Served

Lassner, C., Kappler, D., Kiefel, M., Gehler, P.

In ACM Multimedia Open Source Software Competition, ACM OSSC16, October 2016 (inproceedings)

Abstract
The caffe framework is one of the leading deep learning toolboxes in the machine learning and computer vision community. While it offers efficiency and configurability, it falls short of a full interface to Python. With increasingly involved procedures for training deep networks and reaching depths of hundreds of layers, creating configuration files and keeping them consistent becomes an error prone process. We introduce the barrista framework, offering full, pythonic control over caffe. It separates responsibilities and offers code to solve frequently occurring tasks for pre-processing, training and model inspection. It is compatible to all caffe versions since mid 2015 and can import and export .prototxt files. Examples are included, e.g., a deep residual network implemented in only 172 lines (for arbitrary depths), comparing to 2320 lines in the official implementation for the equivalent model.

am ps

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


Thumb xl toc image
Capture of 2D Microparticle Arrays via a UV-Triggered Thiol-yne “Click” Reaction

Walker (Schamel), D., Singh, D. P., Fischer, P.

Advanced Materials, 28(44):9846-9850, September 2016 (article)

Abstract
Immobilization of colloidal assemblies onto solid supports via a fast UV-triggered click-reaction is achieved. Transient assemblies of microparticles and colloidal materials can be captured and transferred to solid supports. The technique does not require complex reaction conditions, and is compatible with a variety of particle assembly methods.

pf

DOI [BibTex]


Thumb xl toc image
Magnesium plasmonics for UV applications and chiral sensing

Jeong, H. H., Mark, A. G., Fischer, P.

Chem. Comm., 52(82):12179-12182, September 2016 (article)

Abstract
We demonstrate that chiral magnesium nanoparticles show remarkable plasmonic extinction- and chiroptical-effects in the ultraviolet region. The Mg nanohelices possess an enhanced local surface plasmon resonance (LSPR) sensitivity due to the strong dispersion of most substances in the UV region.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl cover nature 1j 00008
Holograms for acoustics

Melde, K., Mark, A. G., Qiu, T., Fischer, P.

Nature, 537, pages: 518-522, September 2016, Max Planck press release, Nature News & Views, Nature Video. (article)

Abstract
Holographic techniques are fundamental to applications such as volumetric displays(1), high-density data storage and optical tweezers that require spatial control of intricate optical(2) or acoustic fields(3,4) within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront(5,6) in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography(7) skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources(3,4,8-12); however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

pf

Video - Holograms for Sound DOI Project Page [BibTex]

Video - Holograms for Sound DOI Project Page [BibTex]


Thumb xl toc image
A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)

Garbacz, P., Fischer, P., Kraemer, S.

J. Chem. Phys., 145(10):104201, September 2016 (article)

Abstract
Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the F-19 NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal. Published by AIP Publishing.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl fig1
Soft continuous microrobots with multiple intrinsic degrees of freedom

Palagi, S., Mark, A. G., Melde, K., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
One of the main challenges in the development of microrobots, i.e. robots at the sub-millimeter scale, is the difficulty of adopting traditional solutions for power, control and, especially, actuation. As a result, most current microrobots are directly manipulated by external fields, and possess only a few passive degrees of freedom (DOFs). We have reported a strategy that enables embodiment, remote powering and control of a large number of DOFs in mobile soft microrobots. These consist of photo-responsive materials, such that the actuation of their soft continuous body can be selectively and dynamically controlled by structured light fields. Here we use finite-element modelling to evaluate the effective number of DOFs that are addressable in our microrobots. We also demonstrate that by this flexible approach different actuation patterns can be obtained, and thus different locomotion performances can be achieved within the very same microrobot. The reported results confirm the versatility of the proposed approach, which allows for easy application-specific optimization and online reconfiguration of the microrobot's behavior. Such versatility will enable advanced applications of robotics and automation at the micro scale.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Active Nanorheology with Plasmonics

Jeong, H. H., Mark, A. G., Lee, T., Alarcon-Correa, M., Eslami, S., Qiu, T., Gibbs, J. G., Fischer, P.

Nano Letters, 16(8):4887-4894, July 2016 (article)

Abstract
Nanoplasmonic systems are valued for their strong optical response and their small size. Most plasmonic sensors and systems to date have been rigid and passive. However, rendering these structures dynamic opens new possibilities for applications. Here we demonstrate that dynamic plasmonic nanoparticles can be used as mechanical sensors to selectively probe the rheological properties of a fluid in situ at the nanoscale and in microscopic volumes. We fabricate chiral magneto-plasmonic nanocolloids that can be actuated by an external magnetic field, which in turn allows for the direct and fast modulation of their distinct optical response. The method is robust and allows nanorheological measurements with a mechanical sensitivity of similar to 0.1 cP, even in strongly absorbing fluids with an optical density of up to OD similar to 3 (similar to 0.1% light transmittance) and in the presence of scatterers (e.g., 50% v/v red blood cells).

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl marss2016
Wireless actuator based on ultrasonic bubble streaming

Qiu, T., Palagi, S., Mark, A. G., Melde, K., Fischer, P.

In 2016 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2016 (inproceedings)

Abstract
Miniaturized actuators are a key element for the manipulation and automation at small scales. Here, we propose a new miniaturized actuator, which consists of an array of micro gas bubbles immersed in a fluid. Under ultrasonic excitation, the oscillation of micro gas bubbles results in acoustic streaming and provides a propulsive force that drives the actuator. The actuator was fabricated by lithography and fluidic streaming was observed under ultrasound excitation. Theoretical modelling and numerical simulations were carried out to show that lowing the surface tension results in a larger amplitude of the bubble oscillation, and thus leads to a higher propulsive force. Experimental results also demonstrate that the propulsive force increases 3.5 times when the surface tension is lowered by adding a surfactant. An actuator with a 4×4 mm 2 surface area provides a driving force of about 0.46 mN, suggesting that it is possible to be used as a wireless actuator for small-scale robots and medical instruments.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl screen shot 2015 12 04 at 15.11.43
Robust Gaussian Filtering using a Pseudo Measurement

Wüthrich, M., Garcia Cifuentes, C., Trimpe, S., Meier, F., Bohg, J., Issac, J., Schaal, S.

In Proceedings of the American Control Conference (ACC), Boston, MA, USA, July 2016 (inproceedings)

Abstract
Most widely-used state estimation algorithms, such as the Extended Kalman Filter and the Unscented Kalman Filter, belong to the family of Gaussian Filters (GF). Unfortunately, GFs fail if the measurement process is modelled by a fat-tailed distribution. This is a severe limitation, because thin-tailed measurement models, such as the analytically-convenient and therefore widely-used Gaussian distribution, are sensitive to outliers. In this paper, we show that mapping the measurements into a specific feature space enables any existing GF algorithm to work with fat-tailed measurement models. We find a feature function which is optimal under certain conditions. Simulation results show that the proposed method allows for robust filtering in both linear and nonlinear systems with measurements contaminated by fat-tailed noise.

am ics

Web link (url) DOI Project Page [BibTex]

Web link (url) DOI Project Page [BibTex]


Thumb xl pic for website small
Robot Arm Pose Estimation by Pixel-wise Regression of Joint Angles

Widmaier, F., Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
To achieve accurate vision-based control with a robotic arm, a good hand-eye coordination is required. However, knowing the current configuration of the arm can be very difficult due to noisy readings from joint encoders or an inaccurate hand-eye calibration. We propose an approach for robot arm pose estimation that uses depth images of the arm as input to directly estimate angular joint positions. This is a frame-by-frame method which does not rely on good initialisation of the solution from the previous frames or knowledge from the joint encoders. For estimation, we employ a random regression forest which is trained on synthetically generated data. We compare different training objectives of the forest and also analyse the influence of prior segmentation of the arms on accuracy. We show that this approach improves previous work both in terms of computational complexity and accuracy. Despite being trained on synthetic data only, we demonstrate that the estimation also works on real depth images.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl ranking top 1
Optimizing for what matters: the Top Grasp Hypothesis

Kappler, D., Schaal, S., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
In this paper, we consider the problem of robotic grasping of objects when only partial and noisy sensor data of the environment is available. We are specifically interested in the problem of reliably selecting the best hypothesis from a whole set. This is commonly the case when trying to grasp an object for which we can only observe a partial point cloud from one viewpoint through noisy sensors. There will be many possible ways to successfully grasp this object, and even more which will fail. We propose a supervised learning method that is trained with a ranking loss. This explicitly encourages that the top-ranked training grasp in a hypothesis set is also positively labeled. We show how we adapt the standard ranking loss to work with data that has binary labels and explain the benefits of this formulation. Additionally, we show how we can efficiently optimize this loss with stochastic gradient descent. In quantitative experiments, we show that we can outperform previous models by a large margin.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl retrieved templates 3
Exemplar-based Prediction of Object Properties from Local Shape Similarity

Bohg, J., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We propose a novel method that enables a robot to identify a graspable object part of an unknown object given only noisy and partial information that is obtained from an RGB-D camera. Our method combines the benefits of local with the advantages of global methods. It learns a classifier that takes a local shape representation as input and outputs the probability that a grasp applied at this location will be successful. Given a query data point that is classified in this way, we can retrieve all the locally similar training data points and use them to predict latent global object shape. This information may help to further prune positively labeled grasp hypotheses based on, e.g. relation to the predicted average global shape or suitability for a specific task. This prediction can also guide scene exploration to prune object shape hypotheses. To learn the function that maps local shape to grasp stability we use a Random Forest Classifier. We show that our method reaches the same classification performance as the current state-of-the-art on this dataset which uses a Convolutional Neural Network. Additionally, we exploit the natural ability of the Random Forest to cluster similar data. For a positively predicted query data point, we retrieve all the locally similar training data points that are associated with the same leaf nodes of the Random Forest. The main insight from this work is that local object shape that affords a grasp is also a good predictor of global object shape. We empirically support this claim with quantitative experiments. Additionally, we demonstrate the predictive capability of the method on some real data examples.

am

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl screen shot 2016 01 19 at 14.48.37
Automatic LQR Tuning Based on Gaussian Process Global Optimization

Marco, A., Hennig, P., Bohg, J., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 270-277, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
This paper proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to a pre-defined performance objective evaluated from experimental data. The underlying Bayesian optimization algorithm is Entropy Search, which represents the latent objective as a Gaussian process and constructs an explicit belief over the location of the objective minimum. This is used to maximize the information gain from each experimental evaluation. Thus, this framework shall yield improved controllers with fewer evaluations compared to alternative approaches. A seven-degree- of-freedom robot arm balancing an inverted pole is used as the experimental demonstrator. Results of a two- and four- dimensional tuning problems highlight the method’s potential for automatic controller tuning on robotic platforms.

am ics pn

Video PDF DOI Project Page [BibTex]

Video PDF DOI Project Page [BibTex]


Thumb xl screen shot 2016 01 19 at 14.56.20
Depth-based Object Tracking Using a Robust Gaussian Filter

Issac, J., Wüthrich, M., Garcia Cifuentes, C., Bohg, J., Trimpe, S., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

Abstract
We consider the problem of model-based 3D- tracking of objects given dense depth images as input. Two difficulties preclude the application of a standard Gaussian filter to this problem. First of all, depth sensors are characterized by fat-tailed measurement noise. To address this issue, we show how a recently published robustification method for Gaussian filters can be applied to the problem at hand. Thereby, we avoid using heuristic outlier detection methods that simply reject measurements if they do not match the model. Secondly, the computational cost of the standard Gaussian filter is prohibitive due to the high-dimensional measurement, i.e. the depth image. To address this problem, we propose an approximation to reduce the computational complexity of the filter. In quantitative experiments on real data we show how our method clearly outperforms the standard Gaussian filter. Furthermore, we compare its performance to a particle-filter-based tracking method, and observe comparable computational efficiency and improved accuracy and smoothness of the estimates.

am ics

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]

Video Bayesian Object Tracking Library Bayesian Filtering Framework Object Tracking Dataset link (url) DOI Project Page [BibTex]


Thumb xl screen shot 2016 06 27 at 09.38.59
Implications of Action-Oriented Paradigm Shifts in Cognitive Science

Dominey, P. F., Prescott, T. J., Bohg, J., Engel, A. K., Gallagher, S., Heed, T., Hoffmann, M., Knoblich, G., Prinz, W., Schwartz, A.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 333-356, 20, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
An action-oriented perspective changes the role of an individual from a passive observer to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential influence on science and the study of cognition are considered (including perception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g. educational applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-oriented approach emphasizes a continuum of interaction between technical aspects of cognitive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system.

am

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]


no image
Communication Rate Analysis for Event-based State Estimation

(Best student paper finalist)

Ebner, S., Trimpe, S.

In Proceedings of the 13th International Workshop on Discrete Event Systems, May 2016 (inproceedings)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl toc imag
Auxetic Metamaterial Simplifies Soft Robot Design

Mark, A. G., Palagi, S., Qiu, T., Fischer, P.

In 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pages: 4951-4956, May 2016 (inproceedings)

Abstract
Soft materials are being adopted in robotics in order to facilitate biomedical applications and in order to achieve simpler and more capable robots. One route to simplification is to design the robot's body using `smart materials' that carry the burden of control and actuation. Metamaterials enable just such rational design of the material properties. Here we present a soft robot that exploits mechanical metamaterials for the intrinsic synchronization of two passive clutches which contact its travel surface. Doing so allows it to move through an enclosed passage with an inchworm motion propelled by a single actuator. Our soft robot consists of two 3D-printed metamaterials that implement auxetic and normal elastic properties. The design, fabrication and characterization of the metamaterials are described. In addition, a working soft robot is presented. Since the synchronization mechanism is a feature of the robot's material body, we believe that the proposed design will enable compliant and robust implementations that scale well with miniaturization.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 2pamcompressed
A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning

Büchler, D., Ott, H., Peters, J.

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 4086-4092, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (conference)

am ei

ICRA16final DOI Project Page [BibTex]

ICRA16final DOI Project Page [BibTex]


no image
Drifting Gaussian Processes with Varying Neighborhood Sizes for Online Model Learning

Meier, F., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2016, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (inproceedings)

am

[BibTex]

[BibTex]


Thumb xl looplearning
Learning Action-Perception Cycles in Robotics: A Question of Representations and Embodiment

Bohg, J., Kragic, D.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 309-320, 18, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
Since the 1950s, robotics research has sought to build a general-purpose agent capable of autonomous, open-ended interaction with realistic, unconstrained environments. Cognition is perceived to be at the core of this process, yet understanding has been challenged because cognition is referred to differently within and across research areas, and is not clearly defined. The classic robotics approach is decomposition into functional modules which perform planning, reasoning, and problem-solving or provide input to these mechanisms. Although advancements have been made and numerous success stories reported in specific niches, this systems-engineering approach has not succeeded in building such a cognitive agent. The emergence of an action-oriented paradigm offers a new approach: action and perception are no longer separable into functional modules but must be considered in a complete loop. This chapter reviews work on different mechanisms for action- perception learning and discusses the role of embodiment in the design of the underlying representations and learning. It discusses the evaluation of agents and suggests the development of a new embodied Turing Test. Appropriate scenarios need to be devised in addition to current competitions, so that abilities can be tested over long time periods.

am

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]


no image
Distinct adaptation to abrupt and gradual torque perturbations with a multi-joint exoskeleton robot

Oh, Y., Sutanto, G., Mistry, M., Schweighofer, N., Schaal, S.

Abstracts of Neural Control of Movement Conference (NCM 2016), Montego Bay, Jamaica, April 2016 (poster)

am

[BibTex]

[BibTex]


Thumb xl spie2016
Towards Photo-Induced Swimming: Actuation of Liquid Crystalline Elastomer in Water

cerretti, G., Martella, D., Zeng, H., Parmeggiani, C., Palagi, S., Mark, A. G., Melde, K., Qiu, T., Fischer, P., Wiersma, D.

In Proc. of SPIE 9738, pages: Laser 3D Manufacturing III, 97380T, April 2016 (inproceedings)

Abstract
Liquid Crystalline Elastomers (LCEs) are very promising smart materials that can be made sensitive to different external stimuli, such as heat, pH, humidity and light, by changing their chemical composition. In this paper we report the implementation of a nematically aligned LCE actuator able to undergo large light-induced deformations. We prove that this property is still present even when the actuator is submerged in fresh water. Thanks to the presence of azo-dye moieties, capable of going through a reversible trans-cis photo-isomerization, and by applying light with two different wavelengths we managed to control the bending of such actuator in the liquid environment. The reported results represent the first step towards swimming microdevices powered by light.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl toc image
Dispersion and shape engineered plasmonic nanosensors

Jeong, H. H., Mark, A. G., Alarcon-Correa, M., Kim, I., Oswald, P., Lee, T. C., Fischer, P.

Nature Communications, 7, pages: 11331, March 2016 (article)

Abstract
Biosensors based on the localized surface plasmon resonance (LSPR) of individual metallic nanoparticles promise to deliver modular, low-cost sensing with high-detection thresholds. However, they continue to suffer from relatively low sensitivity and figures of merit (FOMs). Herein we introduce the idea of sensitivity enhancement of LSPR sensors through engineering of the material dispersion function. Employing dispersion and shape engineering of chiral nanoparticles leads to remarkable refractive index sensitivities (1,091 nmRIU(-1) at lambda = 921 nm) and FOMs (>2,800 RIU-1). A key feature is that the polarization-dependent extinction of the nanoparticles is now characterized by rich spectral features, including bipolar peaks and nulls, suitable for tracking refractive index changes. This sensing modality offers strong optical contrast even in the presence of highly absorbing media, an important consideration for use in complex biological media with limited transmission. The technique is sensitive to surface-specific binding events which we demonstrate through biotin-avidin surface coupling.

pf

link (url) DOI [BibTex]


Thumb xl toc image
Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles

Maier, A. M., Weig, C., Oswald, P., Frey, E., Fischer, P., Liedl, T.

Nano Letters, 16(2):906-910, January 2016 (article)

Abstract
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.

pf

DOI [BibTex]

DOI [BibTex]


no image
Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am ics

PDF [BibTex]

PDF [BibTex]


no image
Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., Neumann, G.

Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)

am ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl nao
Ensuring Ethical Behavior from Autonomous Systems

Anderson, M., Anderson, S. L., Berenz, V.

In Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 12, 2016, 2016 (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


no image
Towards Robust Online Inverse Dynamics Learning

Meier, F., Kappler, D., Ratliff, N., Schaal, S.

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, IEEE, IROS, 2016 (conference) Accepted

am

fmeier_iros_2016 [BibTex]

fmeier_iros_2016 [BibTex]


Thumb xl front small
Self-Supervised Regrasping using Spatio-Temporal Tactile Features and Reinforcement Learning

Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G., Schaal, S.

In International Conference on Intelligent Robots and Systems (IROS) 2016, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016 (inproceedings)

am

pdf video [BibTex]

pdf video [BibTex]


Thumb xl toc image patent
Method for encapsulating a nanostructure, coated nanostructure and use of a coated nanostructure

Jeong, H. H., Lee, T. C., Fischer, P.

Google Patents, 2016, WO Patent App. PCT/EP2016/056,377 (patent)

Abstract
The present invention relates to a method for encapsulating a nanostructure, the method comprising the steps of: -providing a substrate; -forming a plug composed of plug material at said substrate; -forming a nanostructure (on or) at said plug; -forming a shell composed of at least one shell material on external surfaces of the nanostructure, with the at least one shell material covering said nanostructure and at least some of the plug material,whereby the shell and the plug encapsulate the nanostructure. The invention further relates to a coated nanostructure and to the use of a coated nanostructure.

pf

link (url) [BibTex]


Thumb xl heteroscedasticgp
Modeling Variability of Musculoskeletal Systems with Heteroscedastic Gaussian Processes

Büchler, D., Calandra, R., Peters, J.

Workshop on Neurorobotics, Neural Information Processing Systems (NIPS), 2016 (conference)

am ei

NIPS16Neurorobotics [BibTex]

NIPS16Neurorobotics [BibTex]


no image
Locally Weighted Regression for Control

Ting, J., Meier, F., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning and Data Mining, pages: 1-14, Springer US, Boston, MA, 2016 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Event-based Sampling for Reducing Communication Load in Realtime Human Motion Analysis by Wireless Inertial Sensor Networks

Laidig, D., Trimpe, S., Seel, T.

Current Directions in Biomedical Engineering, 2(1):711-714, De Gruyter, 2016 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


Thumb xl iser small
Generalizing Regrasping with Supervised Policy Learning

Chebotar, Y., Hausman, K., Kroemer, O., Sukhatme, G., Schaal, S.

In International Symposium on Experimental Robotics (ISER) 2016, International Symposium on Experimental Robotics, 2016 (inproceedings)

am

pdf video [BibTex]

pdf video [BibTex]


no image
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L.

Autonomous Robots, 40(3):473-491, 2016 (article)

Abstract
Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.

am mg

link (url) DOI [BibTex]


no image
Inertial Sensor-Based Humanoid Joint State Estimation

Rotella, N., Mason, S., Schaal, S., Righetti, L.

In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages: 1825-1831, IEEE, Stockholm, Sweden, 2016 (inproceedings)

Abstract
This work presents methods for the determination of a humanoid robot's joint velocities and accelerations directly from link-mounted Inertial Measurement Units (IMUs) each containing a three-axis gyroscope and a three-axis accelerometer. No information about the global pose of the floating base or its links is required and precise knowledge of the link IMU poses is not necessary due to presented calibration routines. Additionally, a filter is introduced to fuse gyroscope angular velocities with joint position measurements and compensate the computed joint velocities for time-varying gyroscope biases. The resulting joint velocities are subject to less noise and delay than filtered velocities computed from numerical differentiation of joint potentiometer signals, leading to superior performance in joint feedback control as demonstrated in experiments performed on a SARCOS hydraulic humanoid.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]