Header logo is


2018


Nanoscale robotic agents in biological fluids and tissues
Nanoscale robotic agents in biological fluids and tissues

Palagi, S., Walker, D. Q. T., Fischer, P.

In The Encyclopedia of Medical Robotics, 2, pages: 19-42, 2, (Editors: Desai, J. P. and Ferreira, A.), World Scientific, October 2018 (inbook)

Abstract
Nanorobots are untethered structures of sub-micron size that can be controlled in a non-trivial way. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this chapter, we first discuss potential medical applications of motile nanorobots. We briefly present the challenges related to swimming at such small scales and we survey the rheological properties of some biological fluids and tissues. We then review recent experimental results in the development of nanorobots and in particular their design, fabrication, actuation, and propulsion in complex biological fluids and tissues. Recent work shows that their nanoscale dimension is a clear asset for operation in biological tissues, since many biological tissues consist of networks of macromolecules that prevent the passage of larger micron-scale structures, but contain dynamic pores through which nanorobots can move.

pf

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


Colloidal Chemical Nanomotors
Colloidal Chemical Nanomotors

Alarcon-Correa, M.

Colloidal Chemical Nanomotors, pages: 150, Cuvillier Verlag, MPI-IS , June 2018 (phdthesis)

Abstract
Synthetic sophisticated nanostructures represent a fundamental building block for the development of nanotechnology. The fabrication of nanoparticles complex in structure and material composition is key to build nanomachines that can operate as man-made nanoscale motors, which autonomously convert external energy into motion. To achieve this, asymmetric nanoparticles were fabricated combining a physical vapor deposition technique known as NanoGLAD and wet chemical synthesis. This thesis primarily concerns three complex colloidal systems that have been developed: i)Hollow nanocup inclusion complexes that have a single Au nanoparticle in their pocket. The Au particle can be released with an external trigger. ii)The smallest self-propelling nanocolloids that have been made to date, which give rise to a local concentration gradient that causes enhanced diffusion of the particles. iii)Enzyme-powered pumps that have been assembled using bacteriophages as biological nanoscaffolds. This construct also can be used for enzyme recovery after heterogeneous catalysis.

pf

[BibTex]

[BibTex]


no image
Pattern forming systems under confinement

Maihöfer, Michael

Universität Stuttgart, Stuttgart, 2018 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Effective interactions between colloidal particles in critical solvents

Labbe-Laurent, M.

Universität Stuttgart, Stuttgart, 2018 (phdthesis)

icm

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Non-equilibrium dynamics of a binary solvent around heated colloidal particles

Wilke, Moritz

Universität Stuttgart, Stuttgart, 2018 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Monte Carlo study of colloidal structure formation at fluid interfaces

Meiler, Tim

Universität Stuttgart, Stuttgart, 2018 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Electrolyte solutions and simple fluids at curved walls

Reindl, A.

Universität Stuttgart, Stuttgart, 2018 (phdthesis)

icm

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Surface structure of liquid crystals

Sattler, Alexander

Universität Stuttgart, Stuttgart, 2018 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Dynamics of an active particle in confined viscous flows

Pöhnl, Ruben

Universität Stuttgart, Stuttgart, 2018 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Beyond bounded rationality: Reverse-engineering and enhancing human intelligence

Lieder, F.

University of California, Berkeley, 2018 (phdthesis)

re

[BibTex]


no image
Electrostatic interaction between colloids with constant surface potentials at fluid interfaces

Bebon, Rick

Universität Stuttgart, Stuttgart, 2018 (mastersthesis)

icm

[BibTex]

[BibTex]

2012


no image

no image
Nanodroplets at topographic steps

Bartsch, H.

Universität Stuttgart, Stuttgart, 2012 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Janus particles in critical liquids

Labbe-Laurent, M.

Universität Stuttgart, Stuttgart, 2012 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Phase equilibria of binary liquid crystals

Klöss, Hans-Christian

Universität Stuttgart, Stuttgart, 2012 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Pinning of drops at superhydrophobic surfaces

Daschke, Lena

Universität Stuttgart, Stuttgart, 2012 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Impedance spectroscopy of ions at interfaces

Reindl, A.

Universität Stuttgart, Stuttgart, 2012 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Surface of an evaporating liquid

Arnold, Daniel

Universität Stuttgart, Stuttgart, 2012 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Statics and dynamics of critical Casimir forces

Tröndle, M.

Universität Stuttgart, Stuttgart, 2012 (phdthesis)

icm

link (url) [BibTex]

link (url) [BibTex]


no image
Critical Casimir forces beyond the Derjaguin approximation

Brunner, Niklas

Universität Stuttgart, Stuttgart, 2012 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Crystallization of flexible molecules

Held, Felix

Universität Stuttgart, Stuttgart, 2012 (mastersthesis)

icm

[BibTex]

[BibTex]

2003


no image
Coexisting Phases in Binary Platelet Mixtures

Bier, M.

Universität Stuttgart, Stuttgart, 2003 (mastersthesis)

icm

[BibTex]

2003


[BibTex]


no image
Capillary forces between structured substrates

De Souza, E. J.

Universität Stuttgart, Stuttgart, 2003 (mastersthesis)

icm

[BibTex]

[BibTex]


no image
Statistical physics of stochastic geometries

Brodatzki, U.

Universität Wuppertal, Wuppertal, 2003 (phdthesis)

icm

[BibTex]

[BibTex]


no image
Colloidal Particles in Critical Fluids

Schlesener, F.

Universität Stuttgart, Stuttgart, 2003 (phdthesis)

icm

[BibTex]

[BibTex]


no image
Diffusion in quasicrystals

Mehrer, H., Galler, R., Frank, W., Blüher, R., Strohm, A.

In Quasicrystals - Structure and Physical Properties, pages: 312-337, Wiley-VCH, Weinheim, 2003 (incollection)

icm

[BibTex]

[BibTex]


no image
Structure and Solvation Forces in Binary Hard-Sphere Mixtures

Grodon, C.

Universität Stuttgart, Stuttgart, 2003 (mastersthesis)

icm

[BibTex]

[BibTex]