Header logo is


2019


no image
Variational Autoencoders Recover PCA Directions (by Accident)

Rolinek, M., Zietlow, D., Martius, G.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants show unparalleled performance. However, the reasons for this are unclear, since a very particular alignment of the latent embedding is needed but the design of the VAE does not encourage it in any explicit way. We address this matter and offer the following explanation: the diagonal approximation in the encoder together with the inherent stochasticity force local orthogonality of the decoder. The local behavior of promoting both reconstruction and orthogonality matches closely how the PCA embedding is chosen. Alongside providing an intuitive understanding, we justify the statement with full theoretical analysis as well as with experiments.

al

arXiv [BibTex]

2019


arXiv [BibTex]


no image
Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots

Alapan, Y., Yasa, O., Yigit, B., Yasa, I. C., Erkoc, P., Sitti, M.

Annual Review of Control, Robotics, and Autonomous Systems, 2019 (article)

pi

[BibTex]

[BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


no image
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl systemillustration
Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives

Gumbsch, C., Butz, M. V., Martius, G.

IEEE Transactions on Cognitive and Developmental Systems, 2019 (article)

Abstract
Voluntary behavior of humans appears to be composed of small, elementary building blocks or behavioral primitives. While this modular organization seems crucial for the learning of complex motor skills and the flexible adaption of behavior to new circumstances, the problem of learning meaningful, compositional abstractions from sensorimotor experiences remains an open challenge. Here, we introduce a computational learning architecture, termed surprise-based behavioral modularization into event-predictive structures (SUBMODES), that explores behavior and identifies the underlying behavioral units completely from scratch. The SUBMODES architecture bootstraps sensorimotor exploration using a self-organizing neural controller. While exploring the behavioral capabilities of its own body, the system learns modular structures that predict the sensorimotor dynamics and generate the associated behavior. In line with recent theories of event perception, the system uses unexpected prediction error signals, i.e., surprise, to detect transitions between successive behavioral primitives. We show that, when applied to two robotic systems with completely different body kinematics, the system manages to learn a variety of complex behavioral primitives. Moreover, after initial self-exploration the system can use its learned predictive models progressively more effectively for invoking model predictive planning and goal-directed control in different tasks and environments.

al

arXiv PDF video link (url) DOI Project Page [BibTex]


no image
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration

Sun, H., Martius, G.

Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)

Abstract
Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot’s limb surface from internal deformation measured by only a few physical sensors. The general idea of this framework is to predict first the whole surface deformation pattern from the sparsely placed sensors and then to infer number, locations and force magnitudes of unknown contact points. We show how this can be done even if training data can only be obtained for single-contact points using transfer learning at the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors we obtain a high accuracy also for multiple-contact points. The method can be applied to arbitrarily shaped surfaces and physical sensor types, as long as training data can be obtained.

al

link (url) DOI [BibTex]


no image
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]

2007


no image
Space exploration-towards bio-inspired climbing robots

Menon, C., Murphy, M., Sitti, M., Lan, N.

INTECH Open Access Publisher, 2007 (misc)

pi

[BibTex]

2007


[BibTex]


no image
Bacterial flagella-based propulsion and on/off motion control of microscale objects

Behkam, B., Sitti, M.

Applied Physics Letters, 90(2):023902, AIP, 2007 (article)

pi

[BibTex]

[BibTex]


no image
A strategy for vision-based controlled pushing of microparticles

Lynch, N. A., Onal, C., Schuster, E., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 1413-1418, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Friction of partially embedded vertically aligned carbon nanofibers inside elastomers

Aksak, B., Sitti, M., Cassell, A., Li, J., Meyyappan, M., Callen, P.

Applied Physics Letters, 91(6):061906, AIP, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced friction of elastomer microfiber adhesives with spatulate tips

Kim, S., Aksak, B., Sitti, M.

Applied Physics Letters, 91(22):221913, AIP, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Microscale and nanoscale robotics systems [grand challenges of robotics]

Sitti, M.

IEEE Robotics \& Automation Magazine, 14(1):53-60, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
A new biomimetic adhesive for therapeutic capsule endoscope applications in the gastrointestinal tract

Glass, P., Sitti, M., Appasamy, R.

Gastrointestinal Endoscopy, 65(5):AB91, Mosby, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Visual servoing-based autonomous 2-D manipulation of microparticles using a nanoprobe

Onal, C. D., Sitti, M.

IEEE Transactions on control systems technology, 15(5):842-852, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Bacteria integrated swimming microrobots

Behkam, B., Sitti, M.

In 50 years of artificial intelligence, pages: 154-163, Springer Berlin Heidelberg, 2007 (incollection)

pi

[BibTex]

[BibTex]


no image
Adhesion of biologically inspired vertical and angled polymer microfiber arrays

Aksak, B., Murphy, M. P., Sitti, M.

Langmuir, 23(6):3322-3332, ACS Publications, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives

Murphy, M. P., Sitti, M.

IEEE/ASME transactions on Mechatronics, 12(3):330-338, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Autonomous 2D microparticle manipulation based on visual feedback

Onal, C. D., Sitti, M.

In Advanced intelligent mechatronics, 2007 IEEE/ASME international conference on, pages: 1-6, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
STRIDE: A highly maneuverable and non-tethered water strider robot

Song, Y. S., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 980-984, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Subfeature patterning of organic and inorganic materials using robotic assembly

Tafazzoli, A., Cheng, C., Pawashe, C., Sabo, E. K., Trofin, L., Sitti, M., LeDuc, P. R.

Journal of materials research, 22(06):1601-1608, Cambridge University Press, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Dry spinning polymeric nano/microfiber arrays using glass micropipettes with controlled porosities and fiber diameters

Nain, A. S., Gupta, A., Amon, C., Sitti, M.

In Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pages: 728-732, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays

Kim, S., Sitti, M., Hui, C., Long, R., Jagota, A.

Applied Physics Letters, 91(16):161905, AIP, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips

Murphy, M. P., Aksak, B., Sitti, M.

Journal of Adhesion Science and Technology, 21(12-13):1281-1296, Taylor & Francis Group, 2007 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Microrobotically fabricated biological scaffolds for tissue engineering

Nain, A. S., Chung, F., Rule, M., Jadlowiec, J. A., Campbell, P. G., Amon, C., Sitti, M.

In Robotics and Automation, 2007 IEEE International Conference on, pages: 1918-1923, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Surface-tension-driven biologically inspired water strider robots: Theory and experiments

Song, Y. S., Sitti, M.

IEEE Transactions on robotics, 23(3):578-589, IEEE, 2007 (article)

pi

[BibTex]

[BibTex]


no image
Bacterial flagella assisted propulsion of patterned latex particles: Effect of particle size

Behkam, B., Sitti, M.

In Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on, pages: 723-727, 2007 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
A scaled bilateral control system for experimental 1-D teleoperated nanomanipulation applications

Onal, C. D., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages: 483-488, 2007 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Guided Self-organisation for Autonomous Robot Development

Martius, G., Herrmann, J. M., Der, R.

In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)

al

[BibTex]

[BibTex]