Header logo is


2019


Learning to Explore in Motion and Interaction Tasks
Learning to Explore in Motion and Interaction Tasks

Bogdanovic, M., Righetti, L.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, November 2019 (conference)

Abstract
Model free reinforcement learning suffers from the high sampling complexity inherent to robotic manipulation or locomotion tasks. Most successful approaches typically use random sampling strategies which leads to slow policy convergence. In this paper we present a novel approach for efficient exploration that leverages previously learned tasks. We exploit the fact that the same system is used across many tasks and build a generative model for exploration based on data from previously solved tasks to improve learning new tasks. The approach also enables continuous learning of improved exploration strategies as novel tasks are learned. Extensive simulations on a robot manipulator performing a variety of motion and contact interaction tasks demonstrate the capabilities of the approach. In particular, our experiments suggest that the exploration strategy can more than double learning speed, especially when rewards are sparse. Moreover, the algorithm is robust to task variations and parameter tuning, making it beneficial for complex robotic problems.

mg

arXiv [BibTex]

2019


arXiv [BibTex]


no image
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.

Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, October 2019 (conference)

Abstract
Trajectory optimization (TO) is one of the most powerful tools for generating feasible motions for humanoid robots. However, including uncertainties and stochasticity in the TO problem to generate robust motions can easily lead to intractable problems. Furthermore, since the models used in TO have always some level of abstraction, it can be hard to find a realistic set of uncertainties in the model space. In this paper we leverage a sample-efficient learning technique (Bayesian optimization) to robustify TO for humanoid locomotion. The main idea is to use data from full-body simulations to make the TO stage robust by tuning the cost weights. To this end, we split the TO problem into two phases. The first phase solves a convex optimization problem for generating center of mass (CoM) trajectories based on simplified linear dynamics. The second stage employs iterative Linear-Quadratic Gaussian (iLQG) as a whole-body controller to generate full body control inputs. Then we use Bayesian optimization to find the cost weights to use in the first stage that yields robust performance in the simulation/experiment, in the presence of different disturbance/uncertainties. The results show that the proposed approach is able to generate robust motions for different sets of disturbances and uncertainties.

mg

https://arxiv.org/abs/1907.04616 link (url) [BibTex]

https://arxiv.org/abs/1907.04616 link (url) [BibTex]


Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer
A Magnetically-Actuated Untethered Jellyfish-Inspired Soft Milliswimmer

(Best Paper Award)

Ziyu Ren, T. W., Hu, W.

RSS 2019: Robotics: Science and Systems Conference, June 2019 (conference)

pi

[BibTex]

[BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


Improving Haptic Adjective Recognition with Unsupervised Feature Learning
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Leveraging Contact Forces for Learning to Grasp
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


no image
Elastic modulus affects adhesive strength of gecko-inspired synthetics in variable temperature and humidity

Mitchell, CT, Drotlef, D, Dayan, CB, Sitti, M, Stark, AY

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E372-E372, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, March 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]

2018


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

2018


[BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2014


Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives
Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives

Song, S., Majidi, C., Sitti, M.

In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages: 4624-4629, September 2014 (inproceedings)

Abstract
This paper proposes GeckoGripper, a novel soft, inflatable gripper based on the controllable adhesion mechanism of gecko-inspired micro-fiber adhesives, to pick-and-place complex and fragile non-planar or planar parts serially or in parallel. Unlike previous fibrillar structures that use peel angle to control the manipulation of parts, we developed an elastomer micro-fiber adhesive that is fabricated on a soft, flexible membrane, increasing the adaptability to non-planar three-dimensional (3D) geometries and controllability in adhesion. The adhesive switching ratio (the ratio between the maximum and minimum adhesive forces) of the developed gripper was measured to be around 204, which is superior to previous works based on peel angle-based release control methods. Adhesion control mechanism based on the stretch of the membrane and superior adaptability to non-planar 3D geometries enable the micro-fibers to pick-and-place various 3D parts as shown in demonstrations.

pi

DOI [BibTex]

2014


DOI [BibTex]


no image
Three-dimensional robotic manipulation and transport of micro-scale objects by a magnetically driven capillary micro-gripper

Giltinan, J., Diller, E., Mayda, C., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2077-2082, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dual Execution of Optimized Contact Interaction Trajectories

Toussaint, M., Ratliff, N., Bohg, J., Righetti, L., Englert, P., Schaal, S.

In 2014 IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 47-54, IEEE, Chicago, USA, 2014 (inproceedings)

Abstract
Efficient manipulation requires contact to reduce uncertainty. The manipulation literature refers to this as funneling: a methodology for increasing reliability and robustness by leveraging haptic feedback and control of environmental interaction. However, there is a fundamental gap between traditional approaches to trajectory optimization and this concept of robustness by funneling: traditional trajectory optimizers do not discover force feedback strategies. From a POMDP perspective, these behaviors could be regarded as explicit observation actions planned to sufficiently reduce uncertainty thereby enabling a task. While we are sympathetic to the full POMDP view, solving full continuous-space POMDPs in high-dimensions is hard. In this paper, we propose an alternative approach in which trajectory optimization objectives are augmented with new terms that reward uncertainty reduction through contacts, explicitly promoting funneling. This augmentation shifts the responsibility of robustness toward the actual execution of the optimized trajectories. Directly tracing trajectories through configuration space would lose all robustness-dual execution achieves robustness by devising force controllers to reproduce the temporal interaction profile encoded in the dual solution of the optimization problem. This work introduces dual execution in depth and analyze its performance through robustness experiments in both simulation and on a real-world robotic platform.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robotic assembly of hydrogels for tissue engineering and regenerative medicine

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

In Journal of Tissue Engineering and Regenerative Medicine, 8, pages: 181-182, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots

Ye, Z., Edington, C., Russell, A. J., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, pages: 26-31, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics

Herzog, A., Righetti, L., Grimminger, F., Pastor, P., Schaal, S.

In 2014 IEEE/RSJ Conference on Intelligent Robots and Systems, pages: 981-988, IEEE, Chicago, USA, 2014 (inproceedings)

Abstract
Recently several hierarchical inverse dynamics controllers based on cascades of quadratic programs have been proposed for application on torque controlled robots. They have important theoretical benefits but have never been implemented on a torque controlled robot where model inaccuracies and real-time computation requirements can be problematic. In this contribution we present an experimental evaluation of these algorithms in the context of balance control for a humanoid robot. The presented experiments demonstrate the applicability of the approach under real robot conditions (i.e. model uncertainty, estimation errors, etc). We propose a simplification of the optimization problem that allows us to decrease computation time enough to implement it in a fast torque control loop. We implement a momentum-based balance controller which shows robust performance in face of unknown disturbances, even when the robot is standing on only one foot. In a second experiment, a tracking task is evaluated to demonstrate the performance of the controller with more complicated hierarchies. Our results show that hierarchical inverse dynamics controllers can be used for feedback control of humanoid robots and that momentum-based balance control can be efficiently implemented on a real robot.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Full Dynamics LQR Control of a Humanoid Robot: An Experimental Study on Balancing and Squatting

Mason, S., Righetti, L., Schaal, S.

In 2014 IEEE-RAS International Conference on Humanoid Robots, pages: 374-379, IEEE, Madrid, Spain, 2014 (inproceedings)

Abstract
Humanoid robots operating in human environments require whole-body controllers that can offer precise tracking and well-defined disturbance rejection behavior. In this contribution, we propose an experimental evaluation of a linear quadratic regulator (LQR) using a linearization of the full robot dynamics together with the contact constraints. The advantage of the controller is that it explicitly takes into account the coupling between the different joints to create optimal feedback controllers for whole-body control. We also propose a method to explicitly regulate other tasks of interest, such as the regulation of the center of mass of the robot or its angular momentum. In order to evaluate the performance of linear optimal control designs in a real-world scenario (model uncertainty, sensor noise, imperfect state estimation, etc), we test the controllers in a variety of tracking and balancing experiments on a torque controlled humanoid (e.g. balancing, split plane balancing, squatting, pushes while squatting, and balancing on a wheeled platform). The proposed control framework shows a reliable push recovery behavior competitive with more sophisticated balance controllers, rejecting impulses up to 11.7 Ns with peak forces of 650 N, with the added advantage of great computational simplicity. Furthermore, the controller is able to track squatting trajectories up to 1 Hz without relinearization, suggesting that the linearized dynamics is sufficient for significant ranges of motion.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Structural optimization method towards synthesis of small scale flexure-based mobile grippers

Lum, G. Z., Diller, E., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2339-2344, 2014 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Six-Degrees-of-Freedom Remote Actuation of Magnetic Microrobots.

Diller, E. D., Giltinan, J., Lum, G. Z., Ye, Z., Sitti, M.

In Robotics: Science and Systems, 2014 (inproceedings)

pi

[BibTex]

[BibTex]


no image
State Estimation for a Humanoid Robot

Rotella, N., Bloesch, M., Righetti, L., Schaal, S.

In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 952-958, IEEE, Chicago, USA, 2014 (inproceedings)

Abstract
This paper introduces a framework for state estimation on a humanoid robot platform using only common proprioceptive sensors and knowledge of leg kinematics. The presented approach extends that detailed in prior work on a point-foot quadruped platform by adding the rotational constraints imposed by the humanoid's flat feet. As in previous work, the proposed Extended Kalman Filter accommodates contact switching and makes no assumptions about gait or terrain, making it applicable on any humanoid platform for use in any task. A nonlinear observability analysis is performed on both the point-foot and flat-foot filters and it is concluded that the addition of rotational constraints significantly simplifies singular cases and improves the observability characteristics of the system. Results on a simulated walking dataset demonstrate the performance gain of the flat-foot filter as well as confirm the results of the presented observability analysis.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]