Header logo is


2014


Thumb xl publications toc
Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives

Song, S., Majidi, C., Sitti, M.

In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages: 4624-4629, September 2014 (inproceedings)

Abstract
This paper proposes GeckoGripper, a novel soft, inflatable gripper based on the controllable adhesion mechanism of gecko-inspired micro-fiber adhesives, to pick-and-place complex and fragile non-planar or planar parts serially or in parallel. Unlike previous fibrillar structures that use peel angle to control the manipulation of parts, we developed an elastomer micro-fiber adhesive that is fabricated on a soft, flexible membrane, increasing the adaptability to non-planar three-dimensional (3D) geometries and controllability in adhesion. The adhesive switching ratio (the ratio between the maximum and minimum adhesive forces) of the developed gripper was measured to be around 204, which is superior to previous works based on peel angle-based release control methods. Adhesion control mechanism based on the stretch of the membrane and superior adaptability to non-planar 3D geometries enable the micro-fibers to pick-and-place various 3D parts as shown in demonstrations.

pi

DOI [BibTex]

2014


DOI [BibTex]


Thumb xl fig1
3D nanofabrication on complex seed shapes using glancing angle deposition

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), pages: 437-440, January 2014 (inproceedings)

Abstract
Three-dimensional (3D) fabrication techniques promise new device architectures and enable the integration of more components, but fabricating 3D nanostructures for device applications remains challenging. Recently, we have performed glancing angle deposition (GLAD) upon a nanoscale hexagonal seed array to create a variety of 3D nanoscale objects including multicomponent rods, helices, and zigzags [1]. Here, in an effort to generalize our technique, we present a step-by-step approach to grow 3D nanostructures on more complex nanoseed shapes and configurations than before. This approach allows us to create 3D nanostructures on nanoseeds regardless of seed sizes and shapes.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Active Microrheology of the Vitreous of the Eye applied to Nanorobot Propulsion

Qiu, T., Schamel, D., Mark, A. G., Fischer, P.

In 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), pages: 3801-3806, IEEE International Conference on Robotics and Automation ICRA, 2014, Best Automation Paper Award – Finalist. (inproceedings)

Abstract
Biomedical applications of micro or nanorobots require active movement through complex biological fluids. These are generally non-Newtonian (viscoelastic) fluids that are characterized by complicated networks of macromolecules that have size-dependent rheological properties. It has been suggested that an untethered microrobot could assist in retinal surgical procedures. To do this it must navigate the vitreous humor, a hydrated double network of collagen fibrils and high molecular-weight, polyanionic hyaluronan macromolecules. Here, we examine the characteristic size that potential robots must have to traverse vitreous relatively unhindered. We have constructed magnetic tweezers that provide a large gradient of up to 320 T/m to pull sub-micron paramagnetic beads through biological fluids. A novel two-step electrical discharge machining (EDM) approach is used to construct the tips of the magnetic tweezers with a resolution of 30 mu m and high aspect ratio of similar to 17:1 that restricts the magnetic field gradient to the plane of observation. We report measurements on porcine vitreous. In agreement with structural data and passive Brownian diffusion studies we find that the unhindered active propulsion through the eye calls for nanorobots with cross-sections of less than 500 nm.

Best Automation Paper Award – Finalist.

pf

[BibTex]

[BibTex]


no image
Three-dimensional robotic manipulation and transport of micro-scale objects by a magnetically driven capillary micro-gripper

Giltinan, J., Diller, E., Mayda, C., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2077-2082, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Robotic assembly of hydrogels for tissue engineering and regenerative medicine

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

In Journal of Tissue Engineering and Regenerative Medicine, 8, pages: 181-182, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots

Ye, Z., Edington, C., Russell, A. J., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, pages: 26-31, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Structural optimization method towards synthesis of small scale flexure-based mobile grippers

Lum, G. Z., Diller, E., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2339-2344, 2014 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Six-Degrees-of-Freedom Remote Actuation of Magnetic Microrobots.

Diller, E. D., Giltinan, J., Lum, G. Z., Ye, Z., Sitti, M.

In Robotics: Science and Systems, 2014 (inproceedings)

pi

[BibTex]

[BibTex]

2012


no image
Topological optimization for continuum compliant mechanisms via morphological evolution of traditional mechanisms

Lum, GZ, Yeo, SH, Yang, GL, Teo, TJ, Sitti, M

In 4th International Conference on Computational Methods, pages: 8, 2012 (inproceedings)

pi

[BibTex]

2012


[BibTex]


no image
Flapping Wings with DC-Motors via Direct, Elastic Transmissions

Azhar, M., Campolo, D., Lau, G., Sitti, M.

In Proceedings of International Conference on Intelligent Unmanned Systems, 8, 2012 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot

Tortora, G., Glass, P., Wood, N., Aksak, B., Menciassi, A., Sitti, M., Riviere, C.

In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pages: 908-911, 2012 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Magnetic hysteresis for multi-state addressable magnetic microrobotic control

Diller, E., Miyashita, S., Sitti, M.

In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages: 2325-2331, 2012 (inproceedings)

pi

[BibTex]

[BibTex]

2009


no image
Characterization of bacterial actuation of micro-objects

Behkam, B., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1022-1027, 2009 (inproceedings)

pi

[BibTex]

2009


[BibTex]


no image
Compliant footpad design analysis for a bio-inspired quadruped amphibious robot

Park, H. S., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 645-651, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A novel artificial hair receptor based on aligned PVDF micro/nano fibers

Weiting, Liu, Bilsay, Sumer, Cesare, Stefanini, Arianna, Menciassi, Fei, Li, Dajing, Chen, Paolo, Dario, Metin, Sitti, Xin, Fu

In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pages: 49-54, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Waalbot: Agile climbing with synthetic fibrillar dry adhesives

Murphy, M. P., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1599-1600, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Piezoelectric ultrasonic resonant micromotor with a volume of less than 1 mm 3 for use in medical microbots

Watson, B., Friend, J., Yeo, L., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2225-2230, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling and analysis of pitch motion of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2655-2660, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A miniature ceiling walking robot with flat tacky elastomeric footpads

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2276-2281, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tankbot: A miniature, peeling based climber on rough and smooth surfaces

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2282-2287, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Automated 2-D nanoparticle manipulation with an atomic force microscope

Onal, C. D., Ozcan, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1814-1819, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface

Floyd, S., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 528-533, 2009 (inproceedings)

pi

[BibTex]

[BibTex]

2003


no image
High aspect ratio polymer micro/nano-structure manufacturing using nanoembossing, nanomolding and directed self-assembly

Sitti, M.

In ASME 2003 International Mechanical Engineering Congress and Exposition, pages: 293-297, 2003 (inproceedings)

pi

[BibTex]

2003


[BibTex]


no image
Nsf workshop on future directions in nano-scale systems, dynamics and control

Sitti, M.

In Automatic Control Conference (ACC), 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
3-D nano-fiber manufacturing by controlled pulling of liquid polymers using nano-probes

Nain, A. S., Sitti, M.

In Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 1, pages: 60-63, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly

Castelino, K., Satyanarayana, S., Sitti, M.

In Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, 1, pages: 56-59, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Synthetic gecko foot-hair micro/nano-structures for future wall-climbing robots

Sitti, M., Fearing, R. S.

In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on, 1, pages: 1164-1170, 2003 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Biomimetic propulsion for a swimming surgical micro-robot

Edd, J., Payen, S., Rubinsky, B., Stoller, M. L., Sitti, M.

In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, 3, pages: 2583-2588, 2003 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]