Header logo is


2018


Thumb xl screenshot 2018 5 9 swimming back and forth using planar flagellar propulsion at low reynolds numbers   khalil   2018   adv ...
Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Mitwally, M. E., Tawakol, M., Klingner, A., Sitti, M.

Advanced Science, 5(2):1700461, 2018 (article)

Abstract
Abstract Peritrichously flagellated Escherichia coli swim back and forth by wrapping their flagella together in a helical bundle. However, other monotrichous bacteria cannot swim back and forth with a single flagellum and planar wave propagation. Quantifying this observation, a magnetically driven soft two‐tailed microrobot capable of reversing its swimming direction without making a U‐turn trajectory or actively modifying the direction of wave propagation is designed and developed. The microrobot contains magnetic microparticles within the polymer matrix of its head and consists of two collinear, unequal, and opposite ultrathin tails. It is driven and steered using a uniform magnetic field along the direction of motion with a sinusoidally varying orthogonal component. Distinct reversal frequencies that enable selective and independent excitation of the first or the second tail of the microrobot based on their tail length ratio are found. While the first tail provides a propulsive force below one of the reversal frequencies, the second is almost passive, and the net propulsive force achieves flagellated motion along one direction. On the other hand, the second tail achieves flagellated propulsion along the opposite direction above the reversal frequency.

pi

link (url) DOI [BibTex]

2018


link (url) DOI [BibTex]


Thumb xl imgidx 00326
Customized Multi-Person Tracker

Ma, L., Tang, S., Black, M. J., Gool, L. V.

In Computer Vision – ACCV 2018, Springer International Publishing, Asian Conference on Computer Vision, December 2018 (inproceedings)

ps

PDF Project Page [BibTex]

PDF Project Page [BibTex]


Thumb xl dip final
Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., Pons-Moll, G.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 37, pages: 185:1-185:15, ACM, November 2018, Two first authors contributed equally (article)

Abstract
We demonstrate a novel deep neural network capable of reconstructing human full body pose in real-time from 6 Inertial Measurement Units (IMUs) worn on the user's body. In doing so, we address several difficult challenges. First, the problem is severely under-constrained as multiple pose parameters produce the same IMU orientations. Second, capturing IMU data in conjunction with ground-truth poses is expensive and difficult to do in many target application scenarios (e.g., outdoors). Third, modeling temporal dependencies through non-linear optimization has proven effective in prior work but makes real-time prediction infeasible. To address this important limitation, we learn the temporal pose priors using deep learning. To learn from sufficient data, we synthesize IMU data from motion capture datasets. A bi-directional RNN architecture leverages past and future information that is available at training time. At test time, we deploy the network in a sliding window fashion, retaining real time capabilities. To evaluate our method, we recorded DIP-IMU, a dataset consisting of 10 subjects wearing 17 IMUs for validation in 64 sequences with 330,000 time instants; this constitutes the largest IMU dataset publicly available. We quantitatively evaluate our approach on multiple datasets and show results from a real-time implementation. DIP-IMU and the code are available for research purposes.

ps

data code pdf preprint video DOI Project Page [BibTex]

data code pdf preprint video DOI Project Page [BibTex]


Thumb xl universal custom complex magnetic spring design methodology
Universal Custom Complex Magnetic Spring Design Methodology

Woodward, M. A., Sitti, M.

IEEE Transactions on Magnetics, 54(1):1-13, October 2018 (article)

Abstract
A design methodology is presented for creating custom complex magnetic springs through the design of force-displacement curves. This methodology results in a magnet configuration, which will produce a desired force-displacement relationship. Initially, the problem is formulated and solved as a system of linear equations. Then, given the limited likelihood of a single solution being feasibly manufactured, key parameters of the solution are extracted and varied to create a family of solutions. Finally, these solutions are refined using numerical optimization. Given the properties of magnets, this methodology can create any well-defined function of force versus displacement and is model-independent. To demonstrate this flexibility, a number of example magnetic springs are designed; one of which, designed for use in a jumping-gliding robot's shape memory alloy actuated clutch, is manufactured and experimentally characterized. Due to the scaling of magnetic forces, the displacement region which these magnetic springs are most applicable is that of millimeters and below. However, this region is well situated for miniature robots and smart material actuators, where a tailored magnetic spring, designed to compliment a component, can enhance its performance while adding new functionality. The methodology is also expendable to variable interactions and multi-dimensional magnetic field design.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl sevillagcpr
On the Integration of Optical Flow and Action Recognition

Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 281-297, Springer, Cham, October 2018 (inproceedings)

Abstract
Most of the top performing action recognition methods use optical flow as a "black box" input. Here we take a deeper look at the combination of flow and action recognition, and investigate why optical flow is helpful, what makes a flow method good for action recognition, and how we can make it better. In particular, we investigate the impact of different flow algorithms and input transformations to better understand how these affect a state-of-the-art action recognition method. Furthermore, we fine tune two neural-network flow methods end-to-end on the most widely used action recognition dataset (UCF101). Based on these experiments, we make the following five observations: 1) optical flow is useful for action recognition because it is invariant to appearance, 2) optical flow methods are optimized to minimize end-point-error (EPE), but the EPE of current methods is not well correlated with action recognition performance, 3) for the flow methods tested, accuracy at boundaries and at small displacements is most correlated with action recognition performance, 4) training optical flow to minimize classification error instead of minimizing EPE improves recognition performance, and 5) optical flow learned for the task of action recognition differs from traditional optical flow especially inside the human body and at the boundary of the body. These observations may encourage optical flow researchers to look beyond EPE as a goal and guide action recognition researchers to seek better motion cues, leading to a tighter integration of the optical flow and action recognition communities.

avg ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Thumb xl cover
Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3193-3200, IEEE, October 2018, Also accepted and presented in the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
Multi-camera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, online, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


Thumb xl interpolation
Temporal Interpolation as an Unsupervised Pretraining Task for Optical Flow Estimation

Wulff, J., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 567-582, Springer, Cham, October 2018 (inproceedings)

Abstract
The difficulty of annotating training data is a major obstacle to using CNNs for low-level tasks in video. Synthetic data often does not generalize to real videos, while unsupervised methods require heuristic n losses. Proxy tasks can overcome these issues, and start by training a network for a task for which annotation is easier or which can be trained unsupervised. The trained network is then fine-tuned for the original task using small amounts of ground truth data. Here, we investigate frame interpolation as a proxy task for optical flow. Using real movies, we train a CNN unsupervised for temporal interpolation. Such a network implicitly estimates motion, but cannot handle untextured regions. By fi ne-tuning on small amounts of ground truth flow, the network can learn to fill in homogeneous regions and compute full optical flow fi elds. Using this unsupervised pre-training, our network outperforms similar architectures that were trained supervised using synthetic optical flow.

ps

pdf arXiv DOI Project Page [BibTex]

pdf arXiv DOI Project Page [BibTex]


Thumb xl alice
First Impressions of Personality Traits From Body Shapes

Hu, Y., Parde, C. J., Hill, M. Q., Mahmood, N., O’Toole, A. J.

Psychological Science, 29(12):1969-–1983, October 2018 (article)

Abstract
People infer the personalities of others from their facial appearance. Whether they do so from body shapes is less studied. We explored personality inferences made from body shapes. Participants rated personality traits for male and female bodies generated with a three-dimensional body model. Multivariate spaces created from these ratings indicated that people evaluate bodies on valence and agency in ways that directly contrast positive and negative traits from the Big Five domains. Body-trait stereotypes based on the trait ratings revealed a myriad of diverse body shapes that typify individual traits. Personality-trait profiles were predicted reliably from a subset of the body-shape features used to specify the three-dimensional bodies. Body features related to extraversion and conscientiousness were predicted with the highest consensus, followed by openness traits. This study provides the first comprehensive look at the range, diversity, and reliability of personality inferences that people make from body shapes.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Thumb xl bmvc pic
Human Motion Parsing by Hierarchical Dynamic Clustering

Zhang, Y., Tang, S., Sun, H., Neumann, H.

In Proceedings of the British Machine Vision Conference (BMVC), pages: 269, BMVA Press, 29th British Machine Vision Conference, September 2018 (inproceedings)

Abstract
Parsing continuous human motion into meaningful segments plays an essential role in various applications. In this work, we propose a hierarchical dynamic clustering framework to derive action clusters from a sequence of local features in an unsuper- vised bottom-up manner. We systematically investigate the modules in this framework and particularly propose diverse temporal pooling schemes, in order to realize accurate temporal action localization. We demonstrate our method on two motion parsing tasks: temporal action segmentation and abnormal behavior detection. The experimental results indicate that the proposed framework is significantly more effective than the other related state-of-the-art methods on several datasets.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl coma faces
Generating 3D Faces using Convolutional Mesh Autoencoders

Ranjan, A., Bolkart, T., Sanyal, S., Black, M. J.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11207, pages: 725-741, Springer, Cham, September 2018 (inproceedings)

Abstract
Learned 3D representations of human faces are useful for computer vision problems such as 3D face tracking and reconstruction from images, as well as graphics applications such as character generation and animation. Traditional models learn a latent representation of a face using linear subspaces or higher-order tensor generalizations. Due to this linearity, they can not capture extreme deformations and non-linear expressions. To address this, we introduce a versatile model that learns a non-linear representation of a face using spectral convolutions on a mesh surface. We introduce mesh sampling operations that enable a hierarchical mesh representation that captures non-linear variations in shape and expression at multiple scales within the model. In a variational setting, our model samples diverse realistic 3D faces from a multivariate Gaussian distribution. Our training data consists of 20,466 meshes of extreme expressions captured over 12 different subjects. Despite limited training data, our trained model outperforms state-of-the-art face models with 50% lower reconstruction error, while using 75% fewer parameters. We also show that, replacing the expression space of an existing state-of-the-art face model with our autoencoder, achieves a lower reconstruction error. Our data, model and code are available at http://coma.is.tue.mpg.de/.

ps

Code (tensorflow) Code (pytorch) Project Page paper supplementary DOI Project Page Project Page [BibTex]

Code (tensorflow) Code (pytorch) Project Page paper supplementary DOI Project Page Project Page [BibTex]


Thumb xl person reid.001
Part-Aligned Bilinear Representations for Person Re-identification

Suh, Y., Wang, J., Tang, S., Mei, T., Lee, K. M.

In European Conference on Computer Vision (ECCV), 11218, pages: 418-437, Springer, Cham, September 2018 (inproceedings)

Abstract
Comparing the appearance of corresponding body parts is essential for person re-identification. However, body parts are frequently misaligned be- tween detected boxes, due to the detection errors and the pose/viewpoint changes. In this paper, we propose a network that learns a part-aligned representation for person re-identification. Our model consists of a two-stream network, which gen- erates appearance and body part feature maps respectively, and a bilinear-pooling layer that fuses two feature maps to an image descriptor. We show that it results in a compact descriptor, where the inner product between two image descriptors is equivalent to an aggregation of the local appearance similarities of the cor- responding body parts, and thereby significantly reduces the part misalignment problem. Our approach is advantageous over other pose-guided representations by learning part descriptors optimal for person re-identification. Training the net- work does not require any part annotation on the person re-identification dataset. Instead, we simply initialize the part sub-stream using a pre-trained sub-network of an existing pose estimation network and train the whole network to minimize the re-identification loss. We validate the effectiveness of our approach by demon- strating its superiority over the state-of-the-art methods on the standard bench- mark datasets including Market-1501, CUHK03, CUHK01 and DukeMTMC, and standard video dataset MARS.

ps

pdf supplementary DOI Project Page [BibTex]

pdf supplementary DOI Project Page [BibTex]


Thumb xl persondetect  copy
Learning Human Optical Flow

Ranjan, A., Romero, J., Black, M. J.

In 29th British Machine Vision Conference, September 2018 (inproceedings)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Given this, we devise an optical flow algorithm specifically for human motion and show that it is superior to generic flow methods. Designing a method by hand is impractical, so we develop a new training database of image sequences with ground truth optical flow. For this we use a 3D model of the human body and motion capture data to synthesize realistic flow fields. We then train a convolutional neural network to estimate human flow fields from pairs of images. Since many applications in human motion analysis depend on speed, and we anticipate mobile applications, we base our method on SpyNet with several modifications. We demonstrate that our trained network is more accurate than a wide range of top methods on held-out test data and that it generalizes well to real image sequences. When combined with a person detector/tracker, the approach provides a full solution to the problem of 2D human flow estimation. Both the code and the dataset are available for research.

ps

video code pdf link (url) Project Page Project Page [BibTex]

video code pdf link (url) Project Page Project Page [BibTex]


Thumb xl nbf
Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation

(Best Student Paper Award)

Omran, M., Lassner, C., Pons-Moll, G., Gehler, P. V., Schiele, B.

In 3DV, September 2018 (inproceedings)

Abstract
Direct prediction of 3D body pose and shape remains a challenge even for highly parameterized deep learning models. Mapping from the 2D image space to the prediction space is difficult: perspective ambiguities make the loss function noisy and training data is scarce. In this paper, we propose a novel approach (Neural Body Fitting (NBF)). It integrates a statistical body model within a CNN, leveraging reliable bottom-up semantic body part segmentation and robust top-down body model constraints. NBF is fully differentiable and can be trained using 2D and 3D annotations. In detailed experiments, we analyze how the components of our model affect performance, especially the use of part segmentations as an explicit intermediate representation, and present a robust, efficiently trainable framework for 3D human pose estimation from 2D images with competitive results on standard benchmarks. Code is available at https://github.com/mohomran/neural_body_fitting

ps

arXiv code Project Page [BibTex]


Thumb xl joeleccv18
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

Janai, J., Güney, F., Ranjan, A., Black, M. J., Geiger, A.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11220, pages: 713-731, Springer, Cham, September 2018 (inproceedings)

avg ps

pdf suppmat Video Project Page DOI Project Page [BibTex]

pdf suppmat Video Project Page DOI Project Page [BibTex]


Thumb xl sample3 merge black
Learning an Infant Body Model from RGB-D Data for Accurate Full Body Motion Analysis

Hesse, N., Pujades, S., Romero, J., Black, M. J., Bodensteiner, C., Arens, M., Hofmann, U. G., Tacke, U., Hadders-Algra, M., Weinberger, R., Muller-Felber, W., Schroeder, A. S.

In Int. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI), September 2018 (inproceedings)

Abstract
Infant motion analysis enables early detection of neurodevelopmental disorders like cerebral palsy (CP). Diagnosis, however, is challenging, requiring expert human judgement. An automated solution would be beneficial but requires the accurate capture of 3D full-body movements. To that end, we develop a non-intrusive, low-cost, lightweight acquisition system that captures the shape and motion of infants. Going beyond work on modeling adult body shape, we learn a 3D Skinned Multi-Infant Linear body model (SMIL) from noisy, low-quality, and incomplete RGB-D data. We demonstrate the capture of shape and motion with 37 infants in a clinical environment. Quantitative experiments show that SMIL faithfully represents the data and properly factorizes the shape and pose of the infants. With a case study based on general movement assessment (GMA), we demonstrate that SMIL captures enough information to allow medical assessment. SMIL provides a new tool and a step towards a fully automatic system for GMA.

ps

pdf Project page video extended arXiv version DOI Project Page [BibTex]

pdf Project page video extended arXiv version DOI Project Page [BibTex]


Thumb xl eccv pascal results  thumbnail
Deep Directional Statistics: Pose Estimation with Uncertainty Quantification

Prokudin, S., Gehler, P., Nowozin, S.

European Conference on Computer Vision (ECCV), September 2018 (conference)

Abstract
Modern deep learning systems successfully solve many perception tasks such as object pose estimation when the input image is of high quality. However, in challenging imaging conditions such as on low resolution images or when the image is corrupted by imaging artifacts, current systems degrade considerably in accuracy. While a loss in performance is unavoidable we would like our models to quantify their uncertainty in order to achieve robustness against images of varying quality. Probabilistic deep learning models combine the expressive power of deep learning with uncertainty quantification. In this paper, we propose a novel probabilistic deep learning model for the task of angular regression. Our model uses von Mises distributions to predict a distribution over object pose angle. Whereas a single von Mises distribution is making strong assumptions about the shape of the distribution, we extend the basic model to predict a mixture of von Mises distributions. We show how to learn a mixture model using a finite and infinite number of mixture components. Our model allow for likelihood-based training and efficient inference at test time. We demonstrate on a number of challenging pose estimation datasets that our model produces calibrated probability predictions and competitive or superior point estimates compared to the current state-of-the-art.

ps

code pdf [BibTex]

code pdf [BibTex]


Thumb xl vip
Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera

Marcard, T. V., Henschel, R., Black, M. J., Rosenhahn, B., Pons-Moll, G.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11214, pages: 614-631, Springer, Cham, September 2018 (inproceedings)

Abstract
In this work, we propose a method that combines a single hand-held camera and a set of Inertial Measurement Units (IMUs) attached at the body limbs to estimate accurate 3D poses in the wild. This poses many new challenges: the moving camera, heading drift, cluttered background, occlusions and many people visible in the video. We associate 2D pose detections in each image to the corresponding IMU-equipped persons by solving a novel graph based optimization problem that forces 3D to 2D coherency within a frame and across long range frames. Given associations, we jointly optimize the pose of a statistical body model, the camera pose and heading drift using a continuous optimization framework. We validated our method on the TotalCapture dataset, which provides video and IMU synchronized with ground truth. We obtain an accuracy of 26mm, which makes it accurate enough to serve as a benchmark for image-based 3D pose estimation in the wild. Using our method, we recorded 3D Poses in the Wild (3DPW ), a new dataset consisting of more than 51; 000 frames with accurate 3D pose in challenging sequences, including walking in the city, going up-stairs, having co ffee or taking the bus. We make the reconstructed 3D poses, video, IMU and 3D models available for research purposes at http://virtualhumans.mpi-inf.mpg.de/3DPW.

ps

pdf SupMat data project DOI Project Page [BibTex]

pdf SupMat data project DOI Project Page [BibTex]


Thumb xl fict 05 00018 g003
Visual Perception and Evaluation of Photo-Realistic Self-Avatars From 3D Body Scans in Males and Females

Thaler, A., Piryankova, I., Stefanucci, J. K., Pujades, S., de la Rosa, S., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

Frontiers in ICT, 5, pages: 1-14, September 2018 (article)

Abstract
The creation or streaming of photo-realistic self-avatars is important for virtual reality applications that aim for perception and action to replicate real world experience. The appearance and recognition of a digital self-avatar may be especially important for applications related to telepresence, embodied virtual reality, or immersive games. We investigated gender differences in the use of visual cues (shape, texture) of a self-avatar for estimating body weight and evaluating avatar appearance. A full-body scanner was used to capture each participant's body geometry and color information and a set of 3D virtual avatars with realistic weight variations was created based on a statistical body model. Additionally, a second set of avatars was created with an average underlying body shape matched to each participant’s height and weight. In four sets of psychophysical experiments, the influence of visual cues on the accuracy of body weight estimation and the sensitivity to weight changes was assessed by manipulating body shape (own, average) and texture (own photo-realistic, checkerboard). The avatars were presented on a large-screen display, and participants responded to whether the avatar's weight corresponded to their own weight. Participants also adjusted the avatar's weight to their desired weight and evaluated the avatar's appearance with regard to similarity to their own body, uncanniness, and their willingness to accept it as a digital representation of the self. The results of the psychophysical experiments revealed no gender difference in the accuracy of estimating body weight in avatars. However, males accepted a larger weight range of the avatars as corresponding to their own. In terms of the ideal body weight, females but not males desired a thinner body. With regard to the evaluation of avatar appearance, the questionnaire responses suggest that own photo-realistic texture was more important to males for higher similarity ratings, while own body shape seemed to be more important to females. These results argue for gender-specific considerations when creating self-avatars.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl aircap ca 3
Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

Tallamraju, R., Rajappa, S., Black, M. J., Karlapalem, K., Ahmad, A.

2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-8, IEEE, August 2018 (conference)

Abstract
In this work, we consider the problem of decentralized multi-robot target tracking and obstacle avoidance in dynamic environments. Each robot executes a local motion planning algorithm which is based on model predictive control (MPC). The planner is designed as a quadratic program, subject to constraints on robot dynamics and obstacle avoidance. Repulsive potential field functions are employed to avoid obstacles. The novelty of our approach lies in embedding these non-linear potential field functions as constraints within a convex optimization framework. Our method convexifies nonconvex constraints and dependencies, by replacing them as pre-computed external input forces in robot dynamics. The proposed algorithm additionally incorporates different methods to avoid field local minima problems associated with using potential field functions in planning. The motion planner does not enforce predefined trajectories or any formation geometry on the robots and is a comprehensive solution for cooperative obstacle avoidance in the context of multi-robot target tracking. We perform simulation studies for different scenarios to showcase the convergence and efficacy of the proposed algorithm.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


Thumb xl teaser image
Programmable collective behavior in dynamically self-assembled mobile microrobotic swarms

B Yigit, , Y Alapan, , Sitti, M.

Advanced Science, July 2018 (article)

Abstract
Collective control of mobile microrobotic swarms is indispensable for their potential high-impact applications in targeted drug delivery, medical diagnostics, parallel micromanipulation, and environmental sensing and remediation. Lack of on-board computational and sensing capabilities in current microrobotic systems necessitates use of physical interactions among individual microrobots for local physical communication and cooperation. Here, we show that mobile microrobotic swarms with well-defined collective behavior can be designed by engineering magnetic interactions among individual units. Microrobots, consisting of a linear chain of self-assembled magnetic microparticles, locomote on surfaces in response to a precessing magnetic field. Control over the direction of precessing magnetic field allows engineering attractive and repulsive interactions among microrobots and, thus, collective order with well-defined spatial organization and parallel operation over macroscale distances (~ 1 cm). These microrobotic swarms can be guided through confined spaces, while preserving microrobot morphology and function. These swarms can further achieve directional transport of large cargoes on surfaces and small cargoes in bulk fluids. Described design approach, exploiting physical interactions among individual robots, enables facile and rapid formation of self-organized and reconfigurable microrobotic swarms with programmable collective order.

pi

link (url) [BibTex]


Thumb xl picture1
3D-Printed Biodegradable Microswimmer for Drug Delivery and Targeted Cell Labeling

Hakan Ceylan, , I. Ceren Yasa, , Oncay Yasa, , Ahmet Fatih Tabak, , Joshua Giltinan, , Sitti, M.

bioRxiv, pages: 379024, July 2018 (article)

Abstract
Miniaturization of interventional medical devices can leverage minimally invasive technologies by enabling operational resolution at cellular length scales with high precision and repeatability. Untethered micron-scale mobile robots can realize this by navigating and performing in hard-to-reach, confined and delicate inner body sites. However, such a complex task requires an integrated design and engineering strategy, where powering, control, environmental sensing, medical functionality and biodegradability need to be considered altogether. The present study reports a hydrogel-based, biodegradable microrobotic swimmer, which is responsive to the changes in its microenvironment for theranostic cargo delivery and release tasks. We design a double-helical magnetic microswimmer of 20 micrometers length, which is 3D-printed with complex geometrical and compositional features. At normal physiological concentrations, matrix metalloproteinase-2 (MMP-2) enzyme can entirely degrade the microswimmer body in 118 h to solubilized non-toxic products. The microswimmer can respond to the pathological concentrations of MMP-2 by swelling and thereby accelerating the release kinetics of the drug payload. Anti-ErbB 2 antibody-tagged magnetic nanoparticles released from the degraded microswimmers serve for targeted labeling of SKBR3 breast cancer cells to realize the potential of medical imaging of local tissue sites following the therapeutic intervention. These results represent a leap forward toward clinical medical microrobots that are capable of sensing, responding to the local pathological information, and performing specific therapeutic and diagnostic tasks as orderly executed operations using their smart composite material architectures.

pi

DOI Project Page [BibTex]


Thumb xl mazen
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

pdf video Project Page Project Page [BibTex]


Thumb xl screen shot 2018 06 29 at 4.24.39 pm
Innate turning preference of leaf-cutting ants in the absence of external orientation cues

Endlein, T., Sitti, M.

Journal of Experimental Biology, The Company of Biologists Ltd, June 2018 (article)

Abstract
Many ants use a combination of cues for orientation but how do ants find their way when all external cues are suppressed? Do they walk in a random way or are their movements spatially oriented? Here we show for the first time that leaf-cutting ants (Acromyrmex lundii) have an innate preference of turning counter-clockwise (left) when external cues are precluded. We demonstrated this by allowing individual ants to run freely on the water surface of a newly-developed treadmill. The surface tension supported medium-sized workers but effectively prevented ants from reaching the wall of the vessel, important to avoid wall-following behaviour (thigmotaxis). Most ants ran for minutes on the spot but also slowly turned counter-clockwise in the absence of visual cues. Reconstructing the effectively walked path revealed a looping pattern which could be interpreted as a search strategy. A similar turning bias was shown for groups of ants in a symmetrical Y-maze where twice as many ants chose the left branch in the absence of optical cues. Wall-following behaviour was tested by inserting a coiled tube before the Y-fork. When ants traversed a left-coiled tube, more ants chose the left box and vice versa. Adding visual cues in form of vertical black strips either outside the treadmill or on one branch of the Y-maze led to oriented walks towards the strips. It is suggested that both, the turning bias and the wall-following are employed as search strategies for an unknown environment which can be overridden by visual cues.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 1
Motility and chemotaxis of bacteria-driven microswimmers fabricated using antigen 43-mediated biotin display

Schauer, O., Mostaghaci, B., Colin, R., Hürtgen, D., Kraus, D., Sitti, M., Sourjik, V.

Scientific Reports, 8(1):9801, Nature Publishing Group, June 2018 (article)

Abstract
Bacteria-driven biohybrid microswimmers (bacteriabots) combine synthetic cargo with motile living bacteria that enable propulsion and steering. Although fabrication and potential use of such bacteriabots have attracted much attention, existing methods of fabrication require an extensive sample preparation that can drastically decrease the viability and motility of bacteria. Moreover, chemotactic behavior of bacteriabots in a liquid medium with chemical gradients has remained largely unclear. To overcome these shortcomings, we designed Escherichia coli to autonomously display biotin on its cell surface via the engineered autotransporter antigen 43 and thus to bind streptavidin-coated cargo. We show that the cargo attachment to these bacteria is greatly enhanced by motility and occurs predominantly at the cell poles, which is greatly beneficial for the fabrication of motile bacteriabots. We further performed a systemic study to understand and optimize the ability of these bacteriabots to follow chemical gradients. We demonstrate that the chemotaxis of bacteriabots is primarily limited by the cargo-dependent reduction of swimming speed and show that the fabrication of bacteriabots using elongated E. coli cells can be used to overcome this limitation.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 41586 2018 250 fig1 html
Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography

Wang, W., Timonen, J. V. I., Carlson, A., Drotlef, D., Zhang, C. T., Kolle, S., Grinthal, A., Wong, T., Hatton, B., Kang, S. H., Kennedy, S., Chi, J., Blough, R. T., Sitti, M., Mahadevan, L., Aizenberg, J.

Nature, June 2018 (article)

Abstract
Developing adaptive materials with geometries that change in response to external stimuli provides fundamental insights into the links between the physical forces involved and the resultant morphologies and creates a foundation for technologically relevant dynamic systems1,2. In particular, reconfigurable surface topography as a means to control interfacial properties 3 has recently been explored using responsive gels 4 , shape-memory polymers 5 , liquid crystals6-8 and hybrid composites9-14, including magnetically active slippery surfaces12-14. However, these designs exhibit a limited range of topographical changes and thus a restricted scope of function. Here we introduce a hierarchical magneto-responsive composite surface, made by infiltrating a ferrofluid into a microstructured matrix (termed ferrofluid-containing liquid-infused porous surfaces, or FLIPS). We demonstrate various topographical reconfigurations at multiple length scales and a broad range of associated emergent behaviours. An applied magnetic-field gradient induces the movement of magnetic nanoparticles suspended in the ferrofluid, which leads to microscale flow of the ferrofluid first above and then within the microstructured surface. This redistribution changes the initially smooth surface of the ferrofluid (which is immobilized by the porous matrix through capillary forces) into various multiscale hierarchical topographies shaped by the size, arrangement and orientation of the confining microstructures in the magnetic field. We analyse the spatial and temporal dynamics of these reconfigurations theoretically and experimentally as a function of the balance between capillary and magnetic pressures15-19 and of the geometric anisotropy of the FLIPS system. Several interesting functions at three different length scales are demonstrated: self-assembly of colloidal particles at the micrometre scale; regulated flow of liquid droplets at the millimetre scale; and switchable adhesion and friction, liquid pumping and removal of biofilms at the centimetre scale. We envision that FLIPS could be used as part of integrated control systems for the manipulation and transport of matter, thermal management, microfluidics and fouling-release materials.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl patent2009
Method and Apparatus for Estimating Body Shape

Black, M. J., Balan, A., Weiss, A., Sigal, L., Loper, M., St Clair, T.

June 2018, U.S.~Patent 10,002,460 (misc)

Abstract
A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.

ps

Google Patents Project Page [BibTex]

Google Patents Project Page [BibTex]


Thumb xl selfsensing
Self-Sensing Paper Actuators Based on Graphite–Carbon Nanotube Hybrid Films

Amjadi, M., Sitti, M.

Advanced Science, pages: 1800239, May 2018 (article)

Abstract
Abstract Soft actuators have demonstrated potential in a range of applications, including soft robotics, artificial muscles, and biomimetic devices. However, the majority of current soft actuators suffer from the lack of real-time sensory feedback, prohibiting their effective sensing and multitask function. Here, a promising strategy is reported to design bilayer electrothermal actuators capable of simultaneous actuation and sensation (i.e., self-sensing actuators), merely through two input electric terminals. Decoupled electrothermal stimulation and strain sensation is achieved by the optimal combination of graphite microparticles and carbon nanotubes (CNTs) in the form of hybrid films. By finely tuning the charge transport properties of hybrid films, the signal-to-noise ratio (SNR) of self-sensing actuators is remarkably enhanced to over 66. As a result, self-sensing actuators can actively track their displacement and distinguish the touch of soft and hard objects.

pi

link (url) DOI Project Page [BibTex]


Thumb xl f1.large
Soft erythrocyte-based bacterial microswimmers for cargo delivery

Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A. F., Sourjik, V., Sitti, M.

Science Robotics, 3(17):eaar4423, Science Robotics, April 2018 (article)

Abstract
Bacteria-propelled biohybrid microswimmers have recently shown to be able to actively transport and deliver cargos encapsulated into their synthetic constructs to specific regions locally. However, usage of synthetic materials as cargo carriers can result in inferior performance in load-carrying efficiency, biocompatibility, and biodegradability, impeding clinical translation of biohybrid microswimmers. Here, we report construction and external guidance of bacteria-driven microswimmers using red blood cells (RBCs; erythrocytes) as autologous cargo carriers for active and guided drug delivery. Multifunctional biohybrid microswimmers were fabricated by attachment of RBCs [loaded with anticancer doxorubicin drug molecules and superparamagnetic iron oxide nanoparticles (SPIONs)] to bioengineered motile bacteria, Escherichia coli MG1655, via biotin-avidin-biotin binding complex. Autonomous and on-board propulsion of biohybrid microswimmers was provided by bacteria, and their external magnetic guidance was enabled by SPIONs loaded into the RBCs. Furthermore, bacteria-driven RBC microswimmers displayed preserved deformability and attachment stability even after squeezing in microchannels smaller than their sizes, as in the case of bare RBCs. In addition, an on-demand light-activated hyperthermia termination switch was engineered for RBC microswimmers to control bacteria population after operations. RBCs, as biological and autologous cargo carriers in the biohybrid microswimmers, offer notable advantages in stability, deformability, biocompatibility, and biodegradability over synthetic cargo-carrier materials. The biohybrid microswimmer design presented here transforms RBCs from passive cargo carriers into active and guidable cargo carriers toward targeted drug and other cargo delivery applications in medicine.

pi

link (url) DOI Project Page Project Page [BibTex]

link (url) DOI Project Page Project Page [BibTex]


no image
Miniature soft robots – road to the clinic

Sitti, M.

Nature Reviews Materials, April 2018 (article)

Abstract
Soft small robots offer the opportunity to non-invasively access human tissue to perform medical operations and deliver drugs; however, challenges in materials design, biocompatibility and function control remain to be overcome for soft robots to reach the clinic.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl thesis cover2
Model-based Optical Flow: Layers, Learning, and Geometry

Wulff, J.

Tuebingen University, April 2018 (phdthesis)

Abstract
The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes.

ps

Official link DOI Project Page [BibTex]


Thumb xl nl 2018 001642 0005
Wrinkling Instability and Adhesion of a Highly Bendable Gallium Oxide Nanofilm Encapsulating a Liquid-Gallium Droplet

Yunusa, M., Amador, G. J., Drotlef, D., Sitti, M.

Nano Letters, 18(4):2498-2504, March 2018 (article)

Abstract
The wrinkling and interfacial adhesion mechanics of a gallium-oxide nanofilm encapsulating a liquid-gallium droplet are presented. The native oxide nanofilm provides mechanical stability by preventing the flow of the liquid metal. We show how a crumpled oxide skin a few nanometers thick behaves akin to a highly bendable elastic nanofilm under ambient conditions. Upon compression, a wrinkling instability emerges at the contact interface to relieve the applied stress. As the load is further increased, radial wrinkles evolve, and, eventually, the oxide nanofilm ruptures. The observed wrinkling closely resembles the instability experienced by nanofilms under axisymmetric loading, thus providing further insights into the behaviors of elastic nanofilms. Moreover, the mechanical attributes of the oxide skin enable high surface conformation by exhibiting liquid-like behavior. We measured an adhesion energy of 0.238 ± 0.008 J m–2 between a liquid-gallium droplet and smooth flat glass, which is close to the measurements of thin-sheet nanomaterials such as graphene on silicon dioxide.

pi

link (url) DOI [BibTex]


Thumb xl screenshot 2018 5 9 1803 01048 pdf
Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Ornek, E. P., Araujo, H., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
Reliable and real-time 3D reconstruction and localization functionality is a crucial prerequisite for the navigation of actively controlled capsule endoscopic robots as an emerging, minimally invasive diagnostic and therapeutic technology for use in the gastrointestinal (GI) tract. In this study, we propose a fully dense, non-rigidly deformable, strictly real-time, intraoperative map fusion approach for actively controlled endoscopic capsule robot applications which combines magnetic and vision-based localization, with non-rigid deformations based frame-to-model map fusion. The performance of the proposed method is demonstrated using four different ex-vivo porcine stomach models. Across different trajectories of varying speed and complexity, and four different endoscopic cameras, the root mean square surface reconstruction errors 1.58 to 2.17 cm.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screenshot 2018 5 9 1803 01047 pdf
Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

Turan, M., Ornek, E. P., Ibrahimli, N., Giracoglu, C., Almalioglu, Y., Yanik, M. F., Sitti, M.

ArXiv e-prints, March 2018 (article)

Abstract
In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.

pi

link (url) [BibTex]

link (url) [BibTex]


Thumb xl mabi201700377 fig 0001 m
Self‐Folded Hydrogel Tubes for Implantable Muscular Tissue Scaffolds

Vannozzi, L., Yasa, I. C., Ceylan, H., Menciassi, A., Ricotti, L., Sitti, M.

Macromolecular Bioscience, (0), March 2018 (article)

Abstract
Abstract Programming materials with tunable physical and chemical interactions among its components pave the way of generating 3D functional active microsystems with various potential applications in tissue engineering, drug delivery, and soft robotics. Here, the development of a recapitulated fascicle‐like implantable muscle construct by programmed self‐folding of poly(ethylene glycol) diacrylate hydrogels is reported. The system comprises two stacked layers, each with differential swelling degrees, stiffnesses, and thicknesses in 2D, which folds into a 3D tube together. Inside the tubes, muscle cell adhesion and their spatial alignment are controlled. Both skeletal and cardiac muscle cells also exhibit high viability, and cardiac myocytes preserve their contractile function over the course of 7 d. Integration of biological cells with smart, shape‐changing materials could give rise to the development of new cellular constructs for hierarchical tissue assembly, drug testing platforms, and biohybrid actuators that can perform sophisticated tasks.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 41419 2018 379 fig1 html
Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review

Sheykhansari, S., Kozielski, K., Bill, J., Sitti, M., Gemmati, D., Zamboni, P., Singh, A. V.

Cell Death \& Disease, 9(3):348, March 2018 (article)

Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases' lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl cancer cells
Cancer cells biomineralize ionic gold into nanoparticles-microplates via secreting defense proteins with specific gold-binding peptides

Singh, A. V., Jahnke, T., Kishore, V., Park, B., Batuwangala, M., Bill, J., Sitti, M.

Acta Biomaterialia, March 2018 (article)

Abstract
Cancer cells have the capacity to synthesize nanoparticles (NPs). The detailed mechanism of this process is not very well documented. We report the mechanism of biomineralization of aqueous gold chloride into NPs and microplates in the breast-cancer cell line MCF7. Spherical gold NPs are synthesized in these cells in the presence of serum in the culture media by the reduction of HAuCl4. In the absence of serum, the cells exhibit gold microplate formation through seed-mediate growth albeit slower reduction. The structural characteristics of the two types of NPs under different media conditions were confirmed using scanning electron microscopy (SEM); crystallinity and metallic properties were assessed with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). Gold-reducing proteins, related to cell stress initiate the biomineralization of HAuCl4 in cells (under serum free conditions) as confirmed by infrared (IR) spectroscopy. MCF7 cells undergo irreversible replicative senescence when exposed to a high concentration of ionic gold and conversely remain in a dormant reversible quiescent state when exposed to a low gold concentration. The latter cellular state was achievable in the presence of the rho/ROCK inhibitor Y-27632. Proteomic analysis revealed consistent expression of specific proteins under serum and serum-free conditions. A high-throughput proteomic approach to screen gold-reducing proteins and peptide sequences was utilized and validated by quartz crystal microbalance with dissipation (QCM-D). Statement of significance Cancer cells are known to synthesize gold nanoparticles and microstructures, which are promising for bioimaging and other therapeutic applications. However, the detailed mechanism of such biomineralization process is not well understood yet. Herein, we demonstrate that cancer cells exposed to gold ions (grown in serum/serum-free conditions) secrete shock and stress-related proteins with specific gold-binding/reducing polypeptides. Cells undergo reversible senescence and can recover normal physiology when treated with the senescence inhibitor depending on culture condition. The use of mammalian cells as microincubators for synthesis of such particles could have potential influence on their uptake and biocompatibility. This study has important implications for in-situ reduction of ionic gold to anisotropic micro-nanostructures that could be used in-vivo clinical applications and tumor photothermal therapy.

pi

link (url) DOI [BibTex]


Thumb xl animage2mask3
Assessing body image in anorexia nervosa using biometric self-avatars in virtual reality: Attitudinal components rather than visual body size estimation are distorted

Mölbert, S. C., Thaler, A., Mohler, B. J., Streuber, S., Romero, J., Black, M. J., Zipfel, S., Karnath, H., Giel, K. E.

Psychological Medicine, 48(4):642-653, March 2018 (article)

Abstract
Background: Body image disturbance (BID) is a core symptom of anorexia nervosa (AN), but as yet distinctive features of BID are unknown. The present study aimed at disentangling perceptual and attitudinal components of BID in AN. Methods: We investigated n=24 women with AN and n=24 controls. Based on a 3D body scan, we created realistic virtual 3D bodies (avatars) for each participant that were varied through a range of ±20% of the participants' weights. Avatars were presented in a virtual reality mirror scenario. Using different psychophysical tasks, participants identified and adjusted their actual and their desired body weight. To test for general perceptual biases in estimating body weight, a second experiment investigated perception of weight and shape matched avatars with another identity. Results: Women with AN and controls underestimated their weight, with a trend that women with AN underestimated more. The average desired body of controls had normal weight while the average desired weight of women with AN corresponded to extreme AN (DSM-5). Correlation analyses revealed that desired body weight, but not accuracy of weight estimation, was associated with eating disorder symptoms. In the second experiment, both groups estimated accurately while the most attractive body was similar to Experiment 1. Conclusions: Our results contradict the widespread assumption that patients with AN overestimate their body weight due to visual distortions. Rather, they illustrate that BID might be driven by distorted attitudes with regard to the desired body. Clinical interventions should aim at helping patients with AN to change their desired weight.

ps

doi pdf DOI Project Page [BibTex]


Thumb xl screenshot 2018 5 9 1802 00475 pdf
Thermocapillary-driven fluid flow within microchannels

Amador, G. J., Tabak, A. F., Ren, Z., Alapan, Y., Yasa, O., Sitti, M.

ArXiv e-prints, Febuary 2018 (article)

Abstract
Surface tension gradients induce Marangoni flow, which may be exploited for fluid transport. At the micrometer scale, these surface-driven flows can be more significant than those driven by pressure. By introducing fluid-fluid interfaces on the walls of microfluidic channels, we use surface tension gradients to drive bulk fluid flows. The gradients are specifically induced through thermal energy, exploiting the temperature dependence of a fluid-fluid interface to generate thermocapillary flow. In this report, we provide the design concept for a biocompatible, thermocapillary microchannel capable of being powered by solar irradiation. Using temperature gradients on the order of degrees Celsius per centimeter, we achieve fluid velocities on the order of millimeters per second. Following experimental observations, fluid dynamic models, and numerical simulation, we find that the fluid velocity is linearly proportional to the provided temperature gradient, enabling full control of the fluid flow within the microchannels.

pi

link (url) Project Page [BibTex]


Thumb xl 138 2017 905 fig1 html
Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots

Turan, M., Pilavci, Y. Y., Ganiyusufoglu, I., Araujo, H., Konukoglu, E., Sitti, M.

Machine Vision and Applications, 29(2):345-359, Febuary 2018 (article)

Abstract
Despite significant progress achieved in the last decade to convert passive capsule endoscopes to actively controllable robots, robotic capsule endoscopy still has some challenges. In particular, a fully dense three-dimensional (3D) map reconstruction of the explored organ remains an unsolved problem. Such a dense map would help doctors detect the locations and sizes of the diseased areas more reliably, resulting in more accurate diagnoses. In this study, we propose a comprehensive medical 3D reconstruction method for endoscopic capsule robots, which is built in a modular fashion including preprocessing, keyframe selection, sparse-then-dense alignment-based pose estimation, bundle fusion, and shading-based 3D reconstruction. A detailed quantitative analysis is performed using a non-rigid esophagus gastroduodenoscopy simulator, four different endoscopic cameras, a magnetically activated soft capsule robot, a sub-millimeter precise optical motion tracker, and a fine-scale 3D optical scanner, whereas qualitative ex-vivo experiments are performed on a porcine pig stomach. To the best of our knowledge, this study is the first complete endoscopic 3D map reconstruction approach containing all of the necessary functionalities for a therapeutically relevant 3D map reconstruction.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl plos1
Body size estimation of self and others in females varying in BMI

Thaler, A., Geuss, M. N., Mölbert, S. C., Giel, K. E., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

PLoS ONE, 13(2), Febuary 2018 (article)

Abstract
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

ps

pdf DOI Project Page [BibTex]


Thumb xl khali1 2801793 large
Independent Actuation of Two-Tailed Microrobots

Khalil, I. S. M., Tabak, A. F., Hamed, Y., Tawakol, M., Klingner, A., Gohary, N. E., Mizaikoff, B., Sitti, M.

IEEE Robotics and Automation Letters, 3(3):1703-1710, Febuary 2018 (article)

Abstract
A soft two-tailed microrobot in low Reynolds number fluids does not achieve forward locomotion by identical tails regardless to its wiggling frequency. If the tails are nonidentical, zero forward locomotion is also observed at specific oscillation frequencies (which we refer to as the reversal frequencies), as the propulsive forces imparted to the fluid by each tail are almost equal in magnitude and opposite in direction. We find distinct reversal frequencies for the two-tailed microrobots based on their tail length ratio. At these frequencies, the microrobot achieves negligible net displacement under the influence of a periodic magnetic field. This observation allows us to fabricate groups of microrobots with tail length ratio of 1.24 ± 0.11, 1.48 ± 0.08, and 1.71 ± 0.09. We demonstrate selective actuation of microrobots based on prior characterization of their reversal frequencies. We also implement simultaneous flagellar propulsion of two microrobots and show that they can be controlled to swim along the same direction and opposite to each other using common periodic magnetic fields. In addition, independent motion control of two microrobots is achieved toward two different reference positions with average steady-state error of 110.1 ± 91.8 μm and 146.9 ± 105.9 μm.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl coregpatentfig
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

ps

text [BibTex]


Thumb xl adma201704530 fig 0002 m
Recent Advances in Wearable Transdermal Delivery Systems

Amjadi, M., Sheykhansari, S., Nelson, B. J., Sitti, M.

Advanced Materials, 30(7):1704530, January 2018 (article)

Abstract
Abstract Wearable transdermal delivery systems have recently received tremendous attention due to their noninvasive, convenient, and prolonged administration of pharmacological agents. Here, the material prospects, fabrication processes, and drug‐release mechanisms of these types of therapeutic delivery systems are critically reviewed. The latest progress in the development of multifunctional wearable devices capable of closed‐loop sensation and drug delivery is also discussed. This survey reveals that wearable transdermal delivery has already made an impact in diverse healthcare applications, while several grand challenges remain.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl 1 s2.0 s092523121731665x gr2 lrg
Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

Neurocomputing, 275, pages: 1861 - 1870, January 2018 (article)

Abstract
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep recurrent convolutional neural networks (RCNNs) for the visual odometry task, where convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl nature25443 f3
Small-scale soft-bodied robot with multimodal locomotion

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Nature, 554, pages: 81-85, Nature, January 2018 (article)

Abstract
Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly1, in bioengineering such as single-cell manipulation and biosensing2, and in healthcare3,4,5,6 such as targeted drug delivery4 and minimally invasive surgery3,5. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments7,8,9,10,11,12,13. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts14,15,16. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion17, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

pi

link (url) DOI Project Page [BibTex]


Thumb xl adfm201704902 fig 0002 m
Light‐Driven Janus Hollow Mesoporous TiO2–Au Microswimmers

Sridhar, V., Park, B., Sitti, M.

Advanced Functional Materials, 28(5):1704902, January 2018 (article)

Abstract
Abstract Light‐driven microswimmers have garnered attention for their potential use in various applications, such as environmental remediation, hydrogen evolution, and targeted drug delivery. Janus hollow mesoporous TiO2/Au (JHP–TiO2–Au) microswimmers with enhanced swimming speeds under low‐intensity ultraviolet (UV) light are presented. The swimmers show enhanced swimming speeds both in presence and absence of H2O2. The microswimmers move due to self‐electrophoresis when UV light is incident on them. There is a threefold increase in speed of JHP–TiO2–Au microswimmers in comparison with Janus solid TiO2/Au (JS–TiO2–Au) microswimmers. This increase in their speed is due to the increase in surface area of the porous swimmers and their hollow structure. These microswimmers are also made steerable by using a thin Co magnetic layer. They can be used in potential environmental applications for active photocatalytic degradation of methylene blue and targeted active drug delivery of an anticancer drug (doxurobicin) in vitro in H2O2 solution. Their increased speed from the presence of a hollow mesoporous structure is beneficial for future potential applications, such as hydrogen evolution, selective heterogeneous photocatalysis, and targeted cargo delivery.

pi

link (url) DOI Project Page [BibTex]


Thumb xl khali1 2792156 hires
Mechanical Rubbing of Blood Clots Using Helical Robots Under Ultrasound Guidance

Khalil, I. S. M., Mahdy, D., Sharkawy, A. E., Moustafa, R. R., Tabak, A. F., Mitwally, M. E., Hesham, S., Hamdi, N., Klingner, A., Mohamed, A., Sitti, M.

IEEE Robotics and Automation Letters, 3(2):1112-1119, January 2018 (article)

Abstract
A simple way to mitigate the potential negative sideeffects associated with chemical lysis of a blood clot is to tear its fibrin network via mechanical rubbing using a helical robot. Here, we achieve mechanical rubbing of blood clots under ultrasound guidance and using external magnetic actuation. Position of the helical robot is determined using ultrasound feedback and used to control its motion toward the clot, whereas the volume of the clots is estimated simultaneously using visual feedback. We characterize the shear modulus and ultimate shear strength of the blood clots to predict their removal rate during rubbing. Our in vitro experiments show the ability to move the helical robot controllably toward clots using ultrasound feedback with average and maximum errors of 0.84 ± 0.41 and 2.15 mm, respectively, and achieve removal rate of -0.614 ± 0.303 mm3/min at room temperature (25 °C) and -0.482 ± 0.23 mm3/min at body temperature (37 °C), under the influence of two rotating dipole fields at frequency of 35 Hz. We also validate the effectiveness of mechanical rubbing by measuring the number of red blood cells and platelets past the clot. Our measurements show that rubbing achieves cell count of (46 ± 10.9) × 104 cell/ml, whereas the count in the absence of rubbing is (2 ± 1.41) × 104 cell/ml, after 40 min.

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]