Header logo is


2014


Thumb xl publications toc
Series of Multilinked Caterpillar Track-type Climbing Robots

Lee, G., Kim, H., Seo, K., Kim, J., Sitti, M., Seo, T.

Journal of Field Robotics, November 2014 (article)

Abstract
Climbing robots have been widely applied in many industries involving hard to access, dangerous, or hazardous environments to replace human workers. Climbing speed, payload capacity, the ability to overcome obstacles, and wall-to-wall transitioning are significant characteristics of climbing robots. Here, multilinked track wheel-type climbing robots are proposed to enhance these characteristics. The robots have been developed for five years in collaboration with three universities: Seoul National University, Carnegie Mellon University, and Yeungnam University. Four types of robots are presented for different applications with different surface attachment methods and mechanisms: MultiTank for indoor sites, Flexible caterpillar robot (FCR) and Combot for heavy industrial sites, and MultiTrack for high-rise buildings. The method of surface attachment is different for each robot and application, and the characteristics of the joints between links are designed as active or passive according to the requirement of a given robot. Conceptual design, practical design, and control issues of such climbing robot types are reported, and a proper choice of the attachment methods and joint type is essential for the successful multilink track wheel-type climbing robot for different surface materials, robot size, and computational costs.

pi

DOI [BibTex]

2014


DOI [BibTex]


Thumb xl publications toc
Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives

Song, S., Majidi, C., Sitti, M.

In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages: 4624-4629, September 2014 (inproceedings)

Abstract
This paper proposes GeckoGripper, a novel soft, inflatable gripper based on the controllable adhesion mechanism of gecko-inspired micro-fiber adhesives, to pick-and-place complex and fragile non-planar or planar parts serially or in parallel. Unlike previous fibrillar structures that use peel angle to control the manipulation of parts, we developed an elastomer micro-fiber adhesive that is fabricated on a soft, flexible membrane, increasing the adaptability to non-planar three-dimensional (3D) geometries and controllability in adhesion. The adhesive switching ratio (the ratio between the maximum and minimum adhesive forces) of the developed gripper was measured to be around 204, which is superior to previous works based on peel angle-based release control methods. Adhesion control mechanism based on the stretch of the membrane and superior adaptability to non-planar 3D geometries enable the micro-fibers to pick-and-place various 3D parts as shown in demonstrations.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Segmented molecular design of self-healing proteinaceous materials.

Sariola, V., Pena-Francesch, A., Jung, H., Çetinkaya, M., Pacheco, C., Sitti, M., Demirel, M. C.

Scientific reports, 5, pages: 13482-13482, Nature Publishing Group, July 2014 (article)

Abstract
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl publications toc
Bio-Hybrid Cell-Based Actuators for Microsystems

Carlsen, R. W., Sitti, M.

Small, 10(19):3831-3851, June 2014 (article)

Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

pi

DOI [BibTex]

DOI [BibTex]


no image
Fibrillar structures to reduce viscous drag on aerodynamic and hydrodynamic wall surfaces

Castillo, L., Aksak, B., Sitti, M.

March 2014, US Patent App. 14/774,767 (misc)

pi

[BibTex]

[BibTex]


no image
The design of microfibers with mushroom-shaped tips for optimal adhesion

Sitti, M., Aksak, B.

February 2014, US Patent App. 14/766,561 (misc)

pi

[BibTex]

[BibTex]


Thumb xl publications toccontinuously distributed
Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming

Diller, E., Zhuang, J., Zhan Lum, G., Edwards, M. R., Sitti, M.

Applied Physics Letters, 104(17):174101, AIP, 2014 (article)

Abstract
We have developed a millimeter-scale magnetically driven swimming robot for untethered motion at mid to low Reynolds numbers. The robot is propelled by continuous undulatory deformation, which is enabled by the distributed magnetization profile of a flexible sheet. We demonstrate control of a prototype device and measure deformation and speed as a function of magnetic field strength and frequency. Experimental results are compared with simple magnetoelastic and fluid propulsion models. The presented mechanism provides an efficient remote actuation method at the millimeter scale that may be suitable for further scaling down in size for microrobotics applications in biotechnology and healthcare

pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Biopsy using a Magnetic Capsule Endoscope Carrying, Releasing and Retrieving Untethered Micro-Grippers

Yim, S., Gultepe, E., Gracias, D. H., Sitti, M.

IEEE Trans. on Biomedical Engineering, 61(2):513-521, IEEE, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Investigation of tip current and normal force measured simultaneously during local oxidation of titanium using dual-mode scanning probe microscopy

Ozcan, O., Hu, W., Sitti, M., Bain, J., Ricketts, D.

IET Micro \& Nano Letters, 9(5):332-336, IET, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Three-dimensional robotic manipulation and transport of micro-scale objects by a magnetically driven capillary micro-gripper

Giltinan, J., Diller, E., Mayda, C., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2077-2082, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
SoftCubes: Stretchable and self-assembling three-dimensional soft modular matter

Yim, S., Sitti, M.

The International Journal of Robotics Research, 33(8):1083-1097, SAGE Publications Sage UK: London, England, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Bio-Hybrid Cell-Based Actuators for Microsystems

Carlsen, Rika Wright, Sitti, Metin

Small, 10(19):3831-3851, 2014 (article)

Abstract
As we move towards the miniaturization of devices to perform tasks at the nano and microscale, it has become increasingly important to develop new methods for actuation, sensing, and control. Over the past decade, bio-hybrid methods have been investigated as a promising new approach to overcome the challenges of scaling down robotic and other functional devices. These methods integrate biological cells with artificial components and therefore, can take advantage of the intrinsic actuation and sensing functionalities of biological cells. Here, the recent advancements in bio-hybrid actuation are reviewed, and the challenges associated with the design, fabrication, and control of bio-hybrid microsystems are discussed. As a case study, focus is put on the development of bacteria-driven microswimmers, which has been investigated as a targeted drug delivery carrier. Finally, a future outlook for the development of these systems is provided. The continued integration of biological and artificial components is envisioned to enable the performance of tasks at a smaller and smaller scale in the future, leading to the parallel and distributed operation of functional systems at the microscale.

pi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
Addressing of Micro-robot Teams and Non-contact Micro-manipulation

Diller, E., Ye, Z., Giltinan, J., Sitti, M.

In Small-Scale Robotics. From Nano-to-Millimeter-Sized Robotic Systems and Applications, pages: 28-38, Springer Berlin Heidelberg, 2014 (incollection)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Staying sticky: contact self-cleaning of gecko-inspired adhesives

Mengüç, Y., Röhrig, M., Abusomwan, U., Hölscher, H., Sitti, M.

Journal of The Royal Society Interface, 11(94):20131205, The Royal Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dynamic Trapping and Two-Dimensional Transport of Swimming Microorganisms Using a Rotating Magnetic Micro-Robot

Ye, Z., Sitti, M.

Lab on a Chip, 14(13):2177-2182, Royal Society of Chemistry, 2014 (article)

pi

Project Page [BibTex]


no image
STRIDE II: a water strider-inspired miniature robot with circular footpads

Ozcan, O., Wang, H., Taylor, J. D., Sitti, M.

International Journal of Advanced Robotic Systems, 11(6):85, SAGE Publications Sage UK: London, England, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Soft Grippers Using Micro-Fibrillar Adhesives for Transfer Printing

Song, S., Sitti, M.

Advanced Materials, 26(28):4901-4906, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Can DC motors directly drive flapping wings at high frequency and large wing strokes?

Campolo, D., Azhar, M., Lau, G., Sitti, M.

IEEE/ASME Trans. on Mechatronics, 19(1):109-120, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Magnetic steering control of multi-cellular bio-hybrid microswimmers

Carlsen, R. W., Edwards, M. R., Zhuang, J., Pacoret, C., Sitti, M.

Lab on a Chip, 14(19):3850-3859, Royal Society of Chemistry, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Analytical modeling and experimental characterization of chemotaxis in serratia marcescens

Zhuang, J., Wei, G., Carlsen, R. W., Edwards, M. R., Marculescu, R., Bogdan, P., Sitti, M.

Physical Review E, 89(5):052704, American Physical Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Robotic assembly of hydrogels for tissue engineering and regenerative medicine

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

In Journal of Tissue Engineering and Regenerative Medicine, 8, pages: 181-182, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Swimming characterization of Serratia marcescens for bio-hybrid micro-robotics

Edwards, M. R., Carlsen, R. W., Zhuang, J., Sitti, M.

Journal of Micro-Bio Robotics, 9(3):47-60, Springer Berlin Heidelberg, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Influence of Magnetic Fields on Magneto-Aerotaxis

Bennet, M., McCarthy, A., Fix, D., Edwards, M. R., Repp, F., Vach, P., Dunlop, J. W., Sitti, M., Buller, G. S., Klumpp, S., others,

PLoS One, 9(7):e101150, Public Library of Science, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Liftoff of a Motor-Driven, Flapping-Wing Microaerial Vehicle Capable of Resonance

Hines, L., Campolo, D., Sitti, M.

IEEE Trans. on Robotics, 30(1):220-232, IEEE, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Untethered micro-robotic coding of three-dimensional material composition

Tasoglu, S, Diller, E, Guven, S, Sitti, M, Demirci, U

Nature Communications, 5, pages: DOI-10, Nature Publishing Group, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

Aksak, B., Sahin, K., Sitti, M.

Beilstein journal of nanotechnology, 5(1):630-638, Beilstein-Institut, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Mechanically Switchable Elastomeric Microfibrillar Adhesive Surfaces for Transfer Printing

Sariola, V., Sitti, M.

Advanced Materials Interfaces, 1(4):1300159, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Versatile non-contact micro-manipulation method using rotational flows locally induced by magnetic microrobots

Ye, Z., Edington, C., Russell, A. J., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2014 IEEE/ASME International Conference on, pages: 26-31, 2014 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
MultiMo-Bat: A biologically inspired integrated jumping–gliding robot

Woodward, M. A., Sitti, M.

The International Journal of Robotics Research, 33(12):1511-1529, SAGE Publications Sage UK: London, England, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Rotating Magnetic Miniature Swimming Robots With Multiple Flexible Flagella

Ye, Z., Régnier, S., Sitti, M.

IEEE Trans. on Robotics, 30(1):3-13, 2014 (article)

pi

[BibTex]

[BibTex]


no image
Structural optimization method towards synthesis of small scale flexure-based mobile grippers

Lum, G. Z., Diller, E., Sitti, M.

In Robotics and Automation (ICRA), 2014 IEEE International Conference on, pages: 2339-2344, 2014 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Three-Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro-Grippers

Diller, E., Sitti, M.

Advanced Functional Materials, 24, pages: 4397-4404, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Six-Degrees-of-Freedom Remote Actuation of Magnetic Microrobots.

Diller, E. D., Giltinan, J., Lum, G. Z., Ye, Z., Sitti, M.

In Robotics: Science and Systems, 2014 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Mechanics of Load–Drag–Unload Contact Cleaning of Gecko-Inspired Fibrillar Adhesives

Abusomwan, U. A., Sitti, M.

Langmuir, 30(40):11913-11918, American Chemical Society, 2014 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

2004


no image
E. Coli Inspired Propulsion for Swimming Microrobots

Behkam, Bahareh, Sitti, Metin

pages: 1037–1041, 2004 (article)

Abstract
Medical applications are among the most fascinating areas of microrobotics. For long, scientists have dreamed of miniature smart devices that can travel inside the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases that are in their very early stages. Still a distant dream, significant progress in micro and nanotechnology brings us closer to materializing it. For such a miniature device to be injected into the body, it has to be 800 μm or smaller in diameter. Miniature, safe and energy efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. Scaling the macroscale natation mechanisms to micro/nano length scales is unfeasible. It has been estimated that a vibrating-fin driven swimming robot shorter than 6 mm can not overcome the viscous drag forces in water. In this paper, the authors propose a new type of propulsion inspired by the motility mechanism of bacteria with peritrichous flagellation, such as Escherichia coli, Salmonella typhimurium and Serratia marcescens. The perfomance of the propulsive mechanism is estimated by modeling the dynamics of the motion. The motion of the moving organelle is simulated and key parameters such as velocity, distribution of force and power requirments for different configurations of the tail are determined theoretically. In order to validate the theoretical result, a scaled up model of the swimming robot is fabricated and characterized in silicone oil using the Buckingham PI theorem for scaling. The results are compared with the theoretically computed values. These robots are intended to swim in stagnation/low velocity biofluid and reach currently inaccessible areas of the human body for disease inspection and possibly treatment. Potential target regions to use these robots include eyeball cavity, cerebrospinal fluid and the urinary system.

pi

link (url) DOI [BibTex]

2004


link (url) DOI [BibTex]


no image
E. coli inspired propulsion for swimming microrobots

Behkam, B., Sitti, M.

In ASME 2004 International Mechanical Engineering Congress and Exposition, pages: 1037-1041, 2004 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Dynamic modes of nanoparticle motion during nanoprobe-based manipulation

Tafazzoli, A., Sitti, M.

In Nanotechnology, 2004. 4th IEEE Conference on, pages: 35-37, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Modeling and design of biomimetic adhesives inspired by gecko foot-hairs

Shah, G. J., Sitti, M.

In Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on, pages: 873-878, 2004 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Augmented reality user interface for nanomanipulation using atomic force microscopes

Vogl, W., Sitti, M., Ehrenstrasser, M., Zäh, M.

In Proc. of Eurohaptics, pages: 413-416, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
WaalBots for Space applications

Menon, C., Murphy, M., Angrilli, F., Sitti, M.

In 55th IAC Conference, Vancouver, Canada, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Atomic force microscope probe based controlled pushing for nanotribological characterization

Sitti, M.

IEEE/ASME Transactions on mechatronics, 9(2):343-349, IEEE, 2004 (article)

pi

[BibTex]

[BibTex]


no image
Dynamic behavior and simulation of nanoparticle sliding during nanoprobe-based positioning

Tafazzoli, A., Sitti, M.

In Proc. ASME International Mechanical Engineering Conference, 19, pages: 32, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Three-dimensional nanoscale manipulation and manufacturing using proximal probes: controlled pulling of polymer micro/nanofibers

Nain, A. S., Amon, C., Sitti, M.

In Mechatronics, 2004. ICM’04. Proceedings of the IEEE International Conference on, pages: 224-230, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro-and nano-scale robotics

Sitti, M.

In American Control Conference, 2004. Proceedings of the 2004, 1, pages: 1-8, 2004 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Gecko inspired surface climbing robots

Menon, C., Murphy, M., Sitti, M.

In Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on, pages: 431-436, 2004 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]