Header logo is


2004


no image
Automatic spike sorting for neural decoding

Wood, F. D., Fellows, M., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4009-4012, September 2004 (inproceedings)

ps

pdf [BibTex]

2004


pdf [BibTex]


Closed-loop neural control of cursor motion using a {Kalman} filter
Closed-loop neural control of cursor motion using a Kalman filter

Wu, W., Shaikhouni, A., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4126-4129, September 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


The dense estimation of motion and appearance in layers
The dense estimation of motion and appearance in layers

Yalcin, H., Black, M. J., Fablet, R.

In IEEE Workshop on Image and Video Registration, June 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


{3D} human limb detection using space carving and multi-view eigen models
3D human limb detection using space carving and multi-view eigen models

Bhatia, S., Sigal, L., Isard, M., Black, M. J.

In IEEE Workshop on Articulated and Nonrigid Motion, June 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Tracking loose-limbed people
Tracking loose-limbed people

Sigal, L., Bhatia, S., Roth, S., Black, M. J., Isard, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, 1, pages: 421-428, June 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Gibbs likelihoods for {Bayesian} tracking
Gibbs likelihoods for Bayesian tracking

Roth, S., Sigal, L., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 1, pages: 886-893, June 2004 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Learning Movement Primitives

Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.

In 11th International Symposium on Robotics Research (ISRR2003), pages: 561-572, (Editors: Dario, P. and Chatila, R.), Springer, ISRR, 2004, clmc (inproceedings)

Abstract
This paper discusses a comprehensive framework for modular motor control based on a recently developed theory of dynamic movement primitives (DMP). DMPs are a formulation of movement primitives with autonomous nonlinear differential equations, whose time evolution creates smooth kinematic control policies. Model-based control theory is used to convert the outputs of these policies into motor commands. By means of coupling terms, on-line modifications can be incorporated into the time evolution of the differential equations, thus providing a rather flexible and reactive framework for motor planning and execution. The linear parameterization of DMPs lends itself naturally to supervised learning from demonstration. Moreover, the temporal, scale, and translation invariance of the differential equations with respect to these parameters provides a useful means for movement recognition. A novel reinforcement learning technique based on natural stochastic policy gradients allows a general approach of improving DMPs by trial and error learning with respect to almost arbitrary optimization criteria. We demonstrate the different ingredients of the DMP approach in various examples, involving skill learning from demonstration on the humanoid robot DB, and learning biped walking from demonstration in simulation, including self-improvement of the movement patterns towards energy efficiency through resonance tuning.

am ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Composite Adaptive Control for a Class of Nonlinear Systems

Nakanishi, J., Farrell, J. A., Schaal, S.

In IEEE International Conference on Robotics and Automation, pages: 2647-2652, New Orleans, LA, USA, April 2004, 2004, clmc (inproceedings)

am

link (url) [BibTex]

link (url) [BibTex]


Development of neural motor prostheses for humans
Development of neural motor prostheses for humans

Donoghue, J., Nurmikko, A., Friehs, G., Black, M.

In Advances in Clinical Neurophysiology, (Editors: Hallett, M. and Phillips, L.H. and Schomer, D.L. and Massey, J.M.), Supplements to Clinical Neurophysiology Vol. 57, 2004 (incollection)

ps

pdf [BibTex]

pdf [BibTex]


no image
A framework for learning biped locomotion with dynamic movement primitives

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.

In IEEE-RAS/RSJ International Conference on Humanoid Robots (Humanoids 2004), IEEE, Los Angeles, CA: Nov.10-12, Santa Monica, CA, 2004, clmc (inproceedings)

Abstract
This article summarizes our framework for learning biped locomotion using dynamical movement primitives based on nonlinear oscillators. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a central pattern generator (CPG) of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a frequency adaptation algorithm based on phase resetting and entrainment of coupled oscillators. Numerical simulations and experimental implementation on a physical robot demonstrate the effectiveness of the proposed locomotion controller. Furthermore, we demonstrate that phase resetting contributes to robustness against external perturbations and environmental changes by numerical simulations and experiments.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning Motor Primitives with Reinforcement Learning

Peters, J., Schaal, S.

In Proceedings of the 11th Joint Symposium on Neural Computation, http://resolver.caltech.edu/CaltechJSNC:2004.poster020, 2004, clmc (inproceedings)

Abstract
One of the major challenges in action generation for robotics and in the understanding of human motor control is to learn the "building blocks of move- ment generation," or more precisely, motor primitives. Recently, Ijspeert et al. [1, 2] suggested a novel framework how to use nonlinear dynamical systems as motor primitives. While a lot of progress has been made in teaching these mo- tor primitives using supervised or imitation learning, the self-improvement by interaction of the system with the environment remains a challenging problem. In this poster, we evaluate different reinforcement learning approaches can be used in order to improve the performance of motor primitives. For pursuing this goal, we highlight the difficulties with current reinforcement learning methods, and line out how these lead to a novel algorithm which is based on natural policy gradients [3]. We compare this algorithm to previous reinforcement learning algorithms in the context of dynamic motor primitive learning, and show that it outperforms these by at least an order of magnitude. We demonstrate the efficiency of the resulting reinforcement learning method for creating complex behaviors for automous robotics. The studied behaviors will include both discrete, finite tasks such as baseball swings, as well as complex rhythmic patterns as they occur in biped locomotion

am

[BibTex]

[BibTex]


no image
Computational approaches to motor learning by imitation

Schaal, S., Ijspeert, A., Billard, A.

In The Neuroscience of Social Interaction, (1431):199-218, (Editors: Frith, C. D.;Wolpert, D.), Oxford University Press, Oxford, 2004, clmc (inbook)

Abstract
Movement imitation requires a complex set of mechanisms that map an observed movement of a teacher onto one's own movement apparatus. Relevant problems include movement recognition, pose estimation, pose tracking, body correspondence, coordinate transformation from external to egocentric space, matching of observed against previously learned movement, resolution of redundant degrees-of-freedom that are unconstrained by the observation, suitable movement representations for imitation, modularization of motor control, etc. All of these topics by themselves are active research problems in computational and neurobiological sciences, such that their combination into a complete imitation system remains a daunting undertaking - indeed, one could argue that we need to understand the complete perception-action loop. As a strategy to untangle the complexity of imitation, this paper will examine imitation purely from a computational point of view, i.e. we will review statistical and mathematical approaches that have been suggested for tackling parts of the imitation problem, and discuss their merits, disadvantages and underlying principles. Given the focus on action recognition of other contributions in this special issue, this paper will primarily emphasize the motor side of imitation, assuming that a perceptual system has already identified important features of a demonstrated movement and created their corresponding spatial information. Based on the formalization of motor control in terms of control policies and their associated performance criteria, useful taxonomies of imitation learning can be generated that clarify different approaches and future research directions.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A direct brain-machine interface for 2D cursor control using a Kalman filter

Shaikhouni, A., Wu, W., Moris, D. S., Donoghue, J. P., Black, M. J.

Society for Neuroscience, 2004, Online (conference)

ps

abstract [BibTex]

abstract [BibTex]

2003


Image statistics and anisotropic diffusion
Image statistics and anisotropic diffusion

Scharr, H., Black, M. J., Haussecker, H.

In Int. Conf. on Computer Vision, pages: 840-847, October 2003 (inproceedings)

ps

pdf [BibTex]

2003


pdf [BibTex]


A switching {Kalman} filter model for the motor cortical coding of hand motion
A switching Kalman filter model for the motor cortical coding of hand motion

Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., Donoghue, J. P.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 2083-2086, September 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
A Gaussian mixture model for the motor cortical coding of hand motion

Wu, W., Mumford, D., Black, M. J., Gao, Y., Bienenstock, E., Donoghue, J. P.

Neural Control of Movement, Santa Barbara, CA, April 2003 (conference)

ps

abstract [BibTex]

abstract [BibTex]


no image
Dynamic movement primitives - A framework for motor control in humans and humanoid robots

Schaal, S.

In The International Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, March 4-8, 2003, March 2003, clmc (inproceedings)

Abstract
Sensory-motor integration is one of the key issues in robotics. In this paper, we propose an approach to rhythmic arm movement control that is synchronized with an external signal based on exploiting a simple neural oscillator network. Trajectory generation by the neural oscillator is a biologically inspired method that can allow us to generate a smooth and continuous trajectory. The parameter tuning of the oscillators is used to generate a synchronized movement with wide intervals. We adopted the method for the drumming task as an example task. By using this method, the robot can realize synchronized drumming with wide drumming intervals in real time. The paper also shows the experimental results of drumming by a humanoid robot.

am

link (url) [BibTex]

link (url) [BibTex]


Connecting brains with machines: The neural control of {2D} cursor movement
Connecting brains with machines: The neural control of 2D cursor movement

Black, M. J., Bienenstock, E., Donoghue, J. P., Serruya, M., Wu, W., Gao, Y.

In 1st International IEEE/EMBS Conference on Neural Engineering, pages: 580-583, Capri, Italy, March 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


A quantitative comparison of linear and non-linear models of motor cortical activity for the encoding and decoding of arm motions
A quantitative comparison of linear and non-linear models of motor cortical activity for the encoding and decoding of arm motions

Gao, Y., Black, M. J., Bienenstock, E., Wu, W., Donoghue, J. P.

In 1st International IEEE/EMBS Conference on Neural Engineering, pages: 189-192, Capri, Italy, March 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Bayesian backfitting

D’Souza, A., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
We present an algorithm aimed at addressing both computational and analytical intractability of Bayesian regression models which operate in very high-dimensional, usually underconstrained spaces. Several domains of research frequently provide such datasets, including chemometrics [2], and human movement analysis [1]. The literature in nonparametric statistics provides interesting solutions such as Backfitting [3] and Partial Least Squares [4], which are extremely robust and efficient, yet lack a probabilistic interpretation that could place them in the context of current research in statistical learning algorithms that emphasize the estimation of confidence, posterior distributions, and model complexity. In order to achieve numerical robustness and low computational cost, we first derive a novel Bayesian interpretation of Backfitting (BB) as a computationally efficient regression algorithm. BBÕs learning complexity scales linearly with the input dimensionality by decoupling inference among individual input dimensions. We embed BB in an efficient, locally variational model selection mechanism that automatically grows the number of backfitting experts in a mixture-of-experts regression model. We demonstrate the effectiveness of the algorithm in performing principled regularization of model complexity when fitting nonlinear manifolds while avoiding the numerical hazards associated with highly underconstrained problems. We also note that this algorithm appears applicable in various areas of neural computation, e.g., in abstract models of computational neuroscience, or implementations of statistical learning on artificial systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Reinforcement learning for humanoid robotics

Peters, J., Vijayakumar, S., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids2003), Karlsruhe, Germany, Sept.29-30, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers one of the most general framework to take traditional robotics towards true autonomy and versatility. However, applying reinforcement learning to high dimensional movement systems like humanoid robots remains an unsolved problem. In this paper, we discuss different approaches of reinforcement learning in terms of their applicability in humanoid robotics. Methods can be coarsely classified into three different categories, i.e., greedy methods, `vanilla' policy gradient methods, and natural gradient methods. We discuss that greedy methods are not likely to scale into the domain humanoid robotics as they are problematic when used with function approximation. `Vanilla' policy gradient methods on the other hand have been successfully applied on real-world robots including at least one humanoid robot. We demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. A derivation of the natural policy gradient is provided, proving that the average policy gradient of Kakade (2002) is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges to the nearest local minimum of the cost function with respect to the Fisher information metric under suitable conditions. The algorithm outperforms non-natural policy gradients by far in a cart-pole balancing evaluation, and for learning nonlinear dynamic motor primitives for humanoid robot control. It offers a promising route for the development of reinforcement learning for truly high dimensionally continuous state-action systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Accuracy of manual spike sorting: Results for the Utah intracortical array

Wood, F., Fellows, M., Vargas-Irwin, C., Black, M. J., Donoghue, J. P.

Program No. 279.2. 2003, Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2003, Online (conference)

ps

abstract [BibTex]

abstract [BibTex]


no image
Specular flow and the perception of surface reflectance

Roth, S., Domini, F., Black, M. J.

Journal of Vision, 3 (9): 413a, 2003 (conference)

ps

abstract poster [BibTex]

abstract poster [BibTex]


no image
Discovering imitation strategies through categorization of multi-cimensional data

Billard, A., Epars, Y., Schaal, S., Cheng, G.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)

Abstract
An essential problem of imitation is that of determining Ówhat to imitateÓ, i.e. to determine which of the many features of the demonstration are relevant to the task and which should be reproduced. The strategy followed by the imitator can be modeled as a hierarchical optimization system, which minimizes the discrepancy between two multidimensional datasets. We consider imitation of a manipulation task. To classify across manipulation strategies, we apply a probabilistic analysis to data in Cartesian and joint spaces. We determine a general metric that optimizes the policy of task reproduction, following strategy determination. The model successfully discovers strategies in six different manipulation tasks and controls task reproduction by a full body humanoid robot. or the complete path followed by the demonstrator. We follow a similar taxonomy and apply it to the learning and reproduction of a manipulation task by a humanoid robot. We take the perspective that the features of the movements to imitate are those that appear most frequently, i.e. the invariants in time. The model builds upon previous work [3], [4] and is composed of a hierarchical time delay neural network that extracts invariant features from a manipulation task performed by a human demonstrator. The system analyzes the Carthesian trajectories of the objects and the joint

am

link (url) [BibTex]

link (url) [BibTex]


no image
Scaling reinforcement learning paradigms for motor learning

Peters, J., Vijayakumar, S., Schaal, S.

In Proceedings of the 10th Joint Symposium on Neural Computation (JSNC 2003), Irvine, CA, May 2003, 2003, clmc (inproceedings)

Abstract
Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems and mainly operate in discrete, low dimensional domains like game-playing, artificial toy problems, etc. This drawback makes them unsuitable for application to human or bio-mimetic motor control. In this poster, we look at promising approaches that can potentially scale and suggest a novel formulation of the actor-critic algorithm which takes steps towards alleviating the current shortcomings. We argue that methods based on greedy policies are not likely to scale into high-dimensional domains as they are problematic when used with function approximation Ð a must when dealing with continuous domains. We adopt the path of direct policy gradient based policy improvements since they avoid the problems of unstabilizing dynamics encountered in traditional value iteration based updates. While regular policy gradient methods have demonstrated promising results in the domain of humanoid notor control, we demonstrate that these methods can be significantly improved using the natural policy gradient instead of the regular policy gradient. Based on this, it is proved that KakadeÕs Ôaverage natural policy gradientÕ is indeed the true natural gradient. A general algorithm for estimating the natural gradient, the Natural Actor-Critic algorithm, is introduced. This algorithm converges with probability one to the nearest local minimum in Riemannian space of the cost function. The algorithm outperforms nonnatural policy gradients by far in a cart-pole balancing evaluation, and offers a promising route for the development of reinforcement learning for truly high-dimensionally continuous state-action systems.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Design and Control of a Leg for the Running Machine PANTER

Berns, K., Grimminger, F., Hochholdinger, U., Kerscher, T., Albiez, J.

In Proceedings of the ICAR 2003–11th International Conference on Advanced Robotics, pages: 1737-1742, 2003 (inproceedings)

am

[BibTex]

[BibTex]


no image
Learning attractor landscapes for learning motor primitives

Ijspeert, A., Nakanishi, J., Schaal, S.

In Advances in Neural Information Processing Systems 15, pages: 1547-1554, (Editors: Becker, S.;Thrun, S.;Obermayer, K.), Cambridge, MA: MIT Press, 2003, clmc (inproceedings)

Abstract
If globally high dimensional data has locally only low dimensional distributions, it is advantageous to perform a local dimensionality reduction before further processing the data. In this paper we examine several techniques for local dimensionality reduction in the context of locally weighted linear regression. As possible candidates, we derive local versions of factor analysis regression, principle component regression, principle component regression on joint distributions, and partial least squares regression. After outlining the statistical bases of these methods, we perform Monte Carlo simulations to evaluate their robustness with respect to violations of their statistical assumptions. One surprising outcome is that locally weighted partial least squares regression offers the best average results, thus outperforming even factor analysis, the theoretically most appealing of our candidate techniques.Ê

am

link (url) [BibTex]

link (url) [BibTex]


no image
PANTER-prototype for a fast-running quadruped robot with pneumatic muscles

Albiez, J., Kerscher, T., Grimminger, F., Hochholdinger, U., Dillmann, R., Berns, K.

In Proceedings of the 6th International Conference on Climbing and Walking Robots, pages: 617-624, 2003 (inproceedings)

am

[BibTex]

[BibTex]


no image
Learning from demonstration and adaptation of biped locomotion with dynamical movement primitives

Nakanishi, J., Morimoto, J., Endo, G., Schaal, S., Kawato, M.

In Workshop on Robot Learning by Demonstration, IEEE International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, Oct. 27-31, 2003, clmc (inproceedings)

Abstract
In this paper, we report on our research for learning biped locomotion from human demonstration. Our ultimate goal is to establish a design principle of a controller in order to achieve natural human-like locomotion. We suggest dynamical movement primitives as a CPG of a biped robot, an approach we have previously proposed for learning and encoding complex human movements. Demonstrated trajectories are learned through the movement primitives by locally weighted regression, and the frequency of the learned trajectories is adjusted automatically by a novel frequency adaptation algorithm based on phase resetting and entrainment of oscillators. Numerical simulations demonstrate the effectiveness of the proposed locomotion controller.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Movement planning and imitation by shaping nonlinear attractors

Schaal, S.

In Proceedings of the 12th Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, CT, 2003, clmc (inproceedings)

Abstract
Given the continuous stream of movements that biological systems exhibit in their daily activities, an account for such versatility and creativity has to assume that movement sequences consist of segments, executed either in sequence or with partial or complete overlap. Therefore, a fundamental question that has pervaded research in motor control both in artificial and biological systems revolves around identifying movement primitives (a.k.a. units of actions, basis behaviors, motor schemas, etc.). What are the fundamental building blocks that are strung together, adapted to, and created for ever new behaviors? This paper summarizes results that led to the hypothesis of Dynamic Movement Primitives (DMP). DMPs are units of action that are formalized as stable nonlinear attractor systems. They are useful for autonomous robotics as they are highly flexible in creating complex rhythmic (e.g., locomotion) and discrete (e.g., a tennis swing) behaviors that can quickly be adapted to the inevitable perturbations of a dy-namically changing, stochastic environment. Moreover, DMPs provide a formal framework that also lends itself to investigations in computational neuroscience. A recent finding that allows creating DMPs with the help of well-understood statistical learning methods has elevated DMPs from a more heuristic to a principled modeling approach, and, moreover, created a new foundation for imitation learning. Theoretical insights, evaluations on a humanoid robot, and behavioral and brain imaging data will serve to outline the framework of DMPs for a general approach to motor control and imitation in robotics and biology.

am

link (url) [BibTex]

link (url) [BibTex]


Attractive people: Assembling loose-limbed models using non-parametric belief propagation
Attractive people: Assembling loose-limbed models using non-parametric belief propagation

Sigal, L., Isard, M. I., Sigelman, B. H., Black, M. J.

In Advances in Neural Information Processing Systems 16, NIPS, pages: 1539-1546, (Editors: S. Thrun and L. K. Saul and B. Schölkopf), MIT Press, 2003 (inproceedings)

Abstract
The detection and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes, and the high dimensionality of articulated body models. To cope with these problems we represent the 3D human body as a graphical model in which the relationships between the body parts are represented by conditional probability distributions. We formulate the pose estimation problem as one of probabilistic inference over a graphical model where the random variables correspond to the individual limb parameters (position and orientation). Because the limbs are described by 6-dimensional vectors encoding pose in 3-space, discretization is impractical and the random variables in our model must be continuous-valued. To approximate belief propagation in such a graph we exploit a recently introduced generalization of the particle filter. This framework facilitates the automatic initialization of the body-model from low level cues and is robust to occlusion of body parts and scene clutter.

ps

pdf (color) pdf (black and white) [BibTex]

pdf (color) pdf (black and white) [BibTex]


Neural decoding of cursor motion using a {Kalman} filter
Neural decoding of cursor motion using a Kalman filter

(Nominated: Best student paper)

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Shaikhouni, A., Donoghue, J. P.

In Advances in Neural Information Processing Systems 15, pages: 133-140, MIT Press, 2003 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]

2002


Inferring hand motion from multi-cell recordings in motor cortex using a {Kalman} filter
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

ps

pdf [BibTex]

2002


pdf [BibTex]


Bayesian Inference of Visual Motion Boundaries
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

ps

pdf [BibTex]

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

ps

abstract [BibTex]

abstract [BibTex]


Probabilistic inference of hand motion from neural activity in motor cortex
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

Abstract
Statistical learning and probabilistic inference techniques are used to infer the hand position of a subject from multi-electrode recordings of neural activity in motor cortex. First, an array of electrodes provides train- ing data of neural firing conditioned on hand kinematics. We learn a non- parametric representation of this firing activity using a Bayesian model and rigorously compare it with previous models using cross-validation. Second, we infer a posterior probability distribution over hand motion conditioned on a sequence of neural test data using Bayesian inference. The learned firing models of multiple cells are used to define a non- Gaussian likelihood term which is combined with a prior probability for the kinematics. A particle filtering method is used to represent, update, and propagate the posterior distribution over time. The approach is com- pared with traditional linear filtering methods; the results suggest that it may be appropriate for neural prosthetic applications.

ps

pdf [BibTex]

pdf [BibTex]


no image
Learning rhythmic movements by demonstration using nonlinear oscillators

Ijspeert, J. A., Nakanishi, J., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2002), pages: 958-963, Piscataway, NJ: IEEE, Lausanne, Sept.30-Oct.4 2002, 2002, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning robot control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 983-987, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on learning control in robots.

am

link (url) [BibTex]

link (url) [BibTex]


Automatic detection and tracking of human motion with a view-based representation
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

ps

pdf [BibTex]

pdf [BibTex]


no image
Arm and hand movement control

Schaal, S.

In The handbook of brain theory and neural networks, 2nd Edition, pages: 110-113, 2, (Editors: Arbib, M. A.), MIT Press, Cambridge, MA, 2002, clmc (inbook)

Abstract
This is a review article on computational and biological research on arm and hand control.

am

link (url) [BibTex]

link (url) [BibTex]


A layered motion representation with occlusion and compact spatial support
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

ps

pdf [BibTex]

pdf [BibTex]


Implicit probabilistic models of human motion for synthesis and tracking
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

ps

pdf [BibTex]

pdf [BibTex]


Robust parameterized component analysis: Theory and applications to {2D} facial modeling
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


no image
Reliable stair climbing in the simple hexapod ’RHex’

Moore, E. Z., Campbell, D., Grimminger, F., Buehler, M.

In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), 3, pages: 2222-2227 vol.3, May 2002 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
Movement imitation with nonlinear dynamical systems in humanoid robots

Ijspeert, J. A., Nakanishi, J., Schaal, S.

In International Conference on Robotics and Automation (ICRA2002), Washinton, May 11-15 2002, 2002, clmc (inproceedings)

Abstract
Locally weighted learning (LWL) is a class of statistical learning techniques that provides useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of robotic systems. This paper introduces several LWL algorithms that have been tested successfully in real-time learning of complex robot tasks. We discuss two major classes of LWL, memory-based LWL and purely incremental LWL that does not need to remember any data explicitly. In contrast to the traditional beliefs that LWL methods cannot work well in high-dimensional spaces, we provide new algorithms that have been tested in up to 50 dimensional learning problems. The applicability of our LWL algorithms is demonstrated in various robot learning examples, including the learning of devil-sticking, pole-balancing of a humanoid robot arm, and inverse-dynamics learning for a seven degree-of-freedom robot.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A locally weighted learning composite adaptive controller with structure adaptation

Nakanishi, J., Farrell, J. A., Schaal, S.

In IEEE International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Sept.30-Oct.4 2002, 2002, clmc (inproceedings)

Abstract
This paper introduces a provably stable adaptive learning controller which employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the pro-posed learning adaptive control algorithm uses both the tracking error and the estimation error to up-date the parameters. We provide Lyapunov analyses that demonstrate the stability properties of the learning controller. Numerical simulations illustrate rapid convergence of the tracking error and the automatic structure adaptation capability of the function approximator. This paper introduces a provably stable adaptive learning controller which employs nonlinear function approximation with automatic growth of the learning network according to the nonlinearities and the working domain of the control system. The unknown function in the dynamical system is approximated by piecewise linear models using a nonparametric regression technique. Local models are allocated as necessary and their parameters are optimized on-line. Inspired by composite adaptive control methods, the pro-posed learning adaptive control algorithm uses both the tracking error and the estimation error to up-date the parameters. We provide Lyapunov analyses that demonstrate the stability properties of the learning controller. Numerical simulations illustrate rapid convergence of the tracking error and the automatic structure adaptation capability of the function approximator

am

link (url) [BibTex]

link (url) [BibTex]

2000


no image
Reciprocal excitation between biological and robotic research

Schaal, S., Sternad, D., Dean, W., Kotoska, S., Osu, R., Kawato, M.

In Sensor Fusion and Decentralized Control in Robotic Systems III, Proceedings of SPIE, 4196, pages: 30-40, Boston, MA, Nov.5-8, 2000, November 2000, clmc (inproceedings)

Abstract
While biological principles have inspired researchers in computational and engineering research for a long time, there is still rather limited knowledge flow back from computational to biological domains. This paper presents examples of our work where research on anthropomorphic robots lead us to new insights into explaining biological movement phenomena, starting from behavioral studies up to brain imaging studies. Our research over the past years has focused on principles of trajectory formation with nonlinear dynamical systems, on learning internal models for nonlinear control, and on advanced topics like imitation learning. The formal and empirical analyses of the kinematics and dynamics of movements systems and the tasks that they need to perform lead us to suggest principles of motor control that later on we found surprisingly related to human behavior and even brain activity.

am

link (url) [BibTex]

2000


link (url) [BibTex]


no image
Nonlinear dynamical systems as movement primitives

Schaal, S., Kotosaka, S., Sternad, D.

In Humanoids2000, First IEEE-RAS International Conference on Humanoid Robots, CD-Proceedings, Cambridge, MA, September 2000, clmc (inproceedings)

Abstract
This paper explores the idea to create complex human-like movements from movement primitives based on nonlinear attractor dynamics. Each degree-of-freedom of a limb is assumed to have two independent abilities to create movement, one through a discrete dynamic system, and one through a rhythmic system. The discrete system creates point-to-point movements based on internal or external target specifications. The rhythmic system can add an additional oscillatory movement relative to the current position of the discrete system. In the present study, we develop appropriate dynamic systems that can realize the above model, motivate the particular choice of the systems from a biological and engineering point of view, and present simulation results of the performance of such movement primitives. The model was implemented for a drumming task on a humanoid robot

am

link (url) [BibTex]

link (url) [BibTex]