Header logo is


2019


Das Tier als Modell für Roboter, und Roboter als Modell für Tiere
Das Tier als Modell für Roboter, und Roboter als Modell für Tiere

Badri-Spröwitz, A.

In pages: 167-175, Springer, 2019 (incollection)

dlg

DOI [BibTex]

2019


DOI [BibTex]

2013


Motor Control Adaptation to Changes in Robot Body Dynamics for a Compliant Quadruped Robot
Motor Control Adaptation to Changes in Robot Body Dynamics for a Compliant Quadruped Robot

Pouya, S., Eckert, P., Spröwitz, A., Moc̈kel, R., Ijspeert, A. J.

In Biomimetic and Biohybrid Systems, 8064, pages: 434-437, Lecture Notes in Computer Science, Springer, Heidelberg, 2013 (incollection)

Abstract
One of the major deficiencies of current robots in comparison to living beings is the ability to adapt to new conditions either resulting from environmental changes or their own dynamics. In this work we focus on situations where the robot experiences involuntary changes in its body particularly in its limbs’ inertia. Inspired from its biological counterparts we are interested in enabling the robot to adapt its motor control to the new system dynamics. To reach this goal, we propose two different control strategies and compare their performance when handling these modifications. Our results show substantial improvements in adaptivity to body changes when the robot is aware of its new dynamics and can exploit this knowledge in synthesising new motor control.

dlg

DOI [BibTex]

2013


DOI [BibTex]


Modeling Shapes with Higher-Order Graphs: Theory and Applications
Modeling Shapes with Higher-Order Graphs: Theory and Applications

Wang, C., Zeng, Y., Samaras, D., Paragios, N.

In Shape Perception in Human and Computer Vision: An Interdisciplinary Perspective, (Editors: Zygmunt Pizlo and Sven Dickinson), Springer, 2013 (incollection)

ps

Publishers site [BibTex]

Publishers site [BibTex]


Class-Specific Hough Forests for Object Detection
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

ps

code Project Page [BibTex]

code Project Page [BibTex]


Image Gradient Based Level Set Methods in 2D and 3D
Image Gradient Based Level Set Methods in 2D and 3D

Xianhua Xie, Si Yong Yeo, Majid Mirmehdi, Igor Sazonov, Perumal Nithiarasu

In Deformation Models: Tracking, Animation and Applications, pages: 101-120, 0, (Editors: Manuel González Hidalgo and Arnau Mir Torres and Javier Varona Gómez), Springer, 2013 (inbook)

Abstract
This chapter presents an image gradient based approach to perform 2D and 3D deformable model segmentation using level set. The 2D method uses an external force field that is based on magnetostatics and hypothesized magnetic interactions between the active contour and object boundaries. The major contribution of the method is that the interaction of its forces can greatly improve the active contour in capturing complex geometries and dealing with difficult initializations, weak edges and broken boundaries. This method is then generalized to 3D by reformulating its external force based on geometrical interactions between the relative geometries of the deformable model and the object boundary characterized by image gradient. The evolution of the deformable model is solved using the level set method so that topological changes are handled automatically. The relative geometrical configurations between the deformable model and the object boundaries contribute to a dynamic vector force field that changes accordingly as the deformable model evolves. The geometrically induced dynamic interaction force has been shown to greatly improve the deformable model performance in acquiring complex geometries and highly concave boundaries, and it gives the deformable model a high invariancy in initialization configurations. The voxel interactions across the whole image domain provide a global view of the object boundary representation, giving the external force a long attraction range. The bidirectionality of the external force field allows the new deformable model to deal with arbitrary cross-boundary initializations, and facilitates the handling of weak edges and broken boundaries.

ps

[BibTex]

[BibTex]

2004


Development of neural motor prostheses for humans
Development of neural motor prostheses for humans

Donoghue, J., Nurmikko, A., Friehs, G., Black, M.

In Advances in Clinical Neurophysiology, (Editors: Hallett, M. and Phillips, L.H. and Schomer, D.L. and Massey, J.M.), Supplements to Clinical Neurophysiology Vol. 57, 2004 (incollection)

ps

pdf [BibTex]

2004


pdf [BibTex]

1993


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In Partitioning Data Sets, DIMACS Workshop, pages: 271-286, (Editors: Ingemar Cox, Pierre Hansen, and Bela Julesz), AMS Pub, Providence, RI., April 1993 (incollection)

ps

pdf [BibTex]

1993


pdf [BibTex]