Header logo is


2019


Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources
Controlling Heterogeneous Stochastic Growth Processes on Lattices with Limited Resources

Haksar, R., Solowjow, F., Trimpe, S., Schwager, M.

In Proceedings of the 58th IEEE International Conference on Decision and Control (CDC) , pages: 1315-1322, 58th IEEE International Conference on Decision and Control (CDC), December 2019 (conference)

ics

PDF [BibTex]

2019


PDF [BibTex]


no image
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset

Gondal, M. W., Wuthrich, M., Miladinovic, D., Locatello, F., Breidt, M., Volchkov, V., Akpo, J., Bachem, O., Schölkopf, B., Bauer, S.

Advances in Neural Information Processing Systems 32, pages: 15714-15725, (Editors: H. Wallach and H. Larochelle and A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett), Curran Associates, Inc., 33rd Annual Conference on Neural Information Processing Systems, December 2019 (conference)

am ei sf

link (url) [BibTex]

link (url) [BibTex]


Attacking Optical Flow
Attacking Optical Flow

Ranjan, A., Janai, J., Geiger, A., Black, M. J.

In Proceedings International Conference on Computer Vision (ICCV), pages: 2404-2413, IEEE, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), November 2019, ISSN: 2380-7504 (inproceedings)

Abstract
Deep neural nets achieve state-of-the-art performance on the problem of optical flow estimation. Since optical flow is used in several safety-critical applications like self-driving cars, it is important to gain insights into the robustness of those techniques. Recently, it has been shown that adversarial attacks easily fool deep neural networks to misclassify objects. The robustness of optical flow networks to adversarial attacks, however, has not been studied so far. In this paper, we extend adversarial patch attacks to optical flow networks and show that such attacks can compromise their performance. We show that corrupting a small patch of less than 1% of the image size can significantly affect optical flow estimates. Our attacks lead to noisy flow estimates that extend significantly beyond the region of the attack, in many cases even completely erasing the motion of objects in the scene. While networks using an encoder-decoder architecture are very sensitive to these attacks, we found that networks using a spatial pyramid architecture are less affected. We analyse the success and failure of attacking both architectures by visualizing their feature maps and comparing them to classical optical flow techniques which are robust to these attacks. We also demonstrate that such attacks are practical by placing a printed pattern into real scenes.

avg ps

Video Project Page Paper Supplementary Material link (url) DOI [BibTex]

Video Project Page Paper Supplementary Material link (url) DOI [BibTex]


A Learnable Safety Measure
A Learnable Safety Measure

Heim, S., Rohr, A. V., Trimpe, S., Badri-Spröwitz, A.

Conference on Robot Learning, November 2019 (conference) Accepted

dlg ics

Arxiv [BibTex]

Arxiv [BibTex]


no image
Deep Neural Network Approach in Electrical Impedance Tomography-Based Real-Time Soft Tactile Sensor

Park, H., Lee, H., Park, K., Mo, S., Kim, J.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 7447-7452, Macau, China, November 2019 (inproceedings)

Abstract
Recently, a whole-body tactile sensing have emerged in robotics for safe human-robot interaction. A key issue in the whole-body tactile sensing is ensuring large-area manufacturability and high durability. To fulfill these requirements, a reconstruction method called electrical impedance tomography (EIT) was adopted in large-area tactile sensing. This method maps voltage measurements to conductivity distribution using only a few number of measurement electrodes. A common approach for the mapping is using a linearized model derived from the Maxwell's equation. This linearized model shows fast computation time and moderate robustness against measurement noise but reconstruction accuracy is limited. In this paper, we propose a novel nonlinear EIT algorithm through Deep Neural Network (DNN) approach to improve the reconstruction accuracy of EIT-based tactile sensors. The neural network architecture with rectified linear unit (ReLU) function ensured extremely low computational time (0.002 seconds) and nonlinear network structure which provides superior measurement accuracy. The DNN model was trained with dataset synthesized in simulation environment. To achieve the robustness against measurement noise, the training proceeded with additive Gaussian noise that estimated through actual measurement noise. For real sensor application, the trained DNN model was transferred to a conductive fabric-based soft tactile sensor. For validation, the reconstruction error and noise robustness were mainly compared using conventional linearized model and proposed approach in simulation environment. As a demonstration, the tactile sensor equipped with the trained DNN model is presented for a contact force estimation.

hi

DOI [BibTex]

DOI [BibTex]


Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles
Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles

Saini, N., Price, E., Tallamraju, R., Enficiaud, R., Ludwig, R., Martinović, I., Ahmad, A., Black, M.

Proceedings 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages: 823-832, IEEE, International Conference on Computer Vision (ICCV), October 2019 (conference)

Abstract
Capturing human motion in natural scenarios means moving motion capture out of the lab and into the wild. Typical approaches rely on fixed, calibrated, cameras and reflective markers on the body, significantly limiting the motions that can be captured. To make motion capture truly unconstrained, we describe the first fully autonomous outdoor capture system based on flying vehicles. We use multiple micro-aerial-vehicles(MAVs), each equipped with a monocular RGB camera, an IMU, and a GPS receiver module. These detect the person, optimize their position, and localize themselves approximately. We then develop a markerless motion capture method that is suitable for this challenging scenario with a distant subject, viewed from above, with approximately calibrated and moving cameras. We combine multiple state-of-the-art 2D joint detectors with a 3D human body model and a powerful prior on human pose. We jointly optimize for 3D body pose and camera pose to robustly fit the 2D measurements. To our knowledge, this is the first successful demonstration of outdoor, full-body, markerless motion capture from autonomous flying vehicles.

ps

Code Data Video Paper Manuscript DOI Project Page [BibTex]

Code Data Video Paper Manuscript DOI Project Page [BibTex]


Resolving {3D} Human Pose Ambiguities with {3D} Scene Constraints
Resolving 3D Human Pose Ambiguities with 3D Scene Constraints

Hassan, M., Choutas, V., Tzionas, D., Black, M. J.

In Proceedings International Conference on Computer Vision, pages: 2282-2292, IEEE, International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
To understand and analyze human behavior, we need to capture humans moving in, and interacting with, the world. Most existing methods perform 3D human pose estimation without explicitly considering the scene. We observe however that the world constrains the body and vice-versa. To motivate this, we show that current 3D human pose estimation methods produce results that are not consistent with the 3D scene. Our key contribution is to exploit static 3D scene structure to better estimate human pose from monocular images. The method enforces Proximal Relationships with Object eXclusion and is called PROX. To test this, we collect a new dataset composed of 12 different 3D scenes and RGB sequences of 20 subjects moving in and interacting with the scenes. We represent human pose using the 3D human body model SMPL-X and extend SMPLify-X to estimate body pose using scene constraints. We make use of the 3D scene information by formulating two main constraints. The interpenetration constraint penalizes intersection between the body model and the surrounding 3D scene. The contact constraint encourages specific parts of the body to be in contact with scene surfaces if they are close enough in distance and orientation. For quantitative evaluation we capture a separate dataset with 180 RGB frames in which the ground-truth body pose is estimated using a motion-capture system. We show quantitatively that introducing scene constraints significantly reduces 3D joint error and vertex error. Our code and data are available for research at https://prox.is.tue.mpg.de.

ps

pdf poster link (url) DOI [BibTex]

pdf poster link (url) DOI [BibTex]


Learning to Reconstruct {3D} Human Pose and Shape via Model-fitting in the Loop
Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop

Kolotouros, N., Pavlakos, G., Black, M. J., Daniilidis, K.

Proceedings International Conference on Computer Vision (ICCV), pages: 2252-2261, IEEE, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 2019, ISSN: 2380-7504 (conference)

Abstract
Model-based human pose estimation is currently approached through two different paradigms. Optimization-based methods fit a parametric body model to 2D observations in an iterative manner, leading to accurate image-model alignments, but are often slow and sensitive to the initialization. In contrast, regression-based methods, that use a deep network to directly estimate the model parameters from pixels, tend to provide reasonable, but not pixel accurate, results while requiring huge amounts of supervision. In this work, instead of investigating which approach is better, our key insight is that the two paradigms can form a strong collaboration. A reasonable, directly regressed estimate from the network can initialize the iterative optimization making the fitting faster and more accurate. Similarly, a pixel accurate fit from iterative optimization can act as strong supervision for the network. This is the core of our proposed approach SPIN (SMPL oPtimization IN the loop). The deep network initializes an iterative optimization routine that fits the body model to 2D joints within the training loop, and the fitted estimate is subsequently used to supervise the network. Our approach is self-improving by nature, since better network estimates can lead the optimization to better solutions, while more accurate optimization fits provide better supervision for the network. We demonstrate the effectiveness of our approach in different settings, where 3D ground truth is scarce, or not available, and we consistently outperform the state-of-the-art model-based pose estimation approaches by significant margins.

ps

pdf code project DOI [BibTex]

pdf code project DOI [BibTex]


Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild"
Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild"

Zuffi, S., Kanazawa, A., Berger-Wolf, T., Black, M. J.

In International Conference on Computer Vision, pages: 5358-5367, IEEE, International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
We present the first method to perform automatic 3D pose, shape and texture capture of animals from images acquired in-the-wild. In particular, we focus on the problem of capturing 3D information about Grevy's zebras from a collection of images. The Grevy's zebra is one of the most endangered species in Africa, with only a few thousand individuals left. Capturing the shape and pose of these animals can provide biologists and conservationists with information about animal health and behavior. In contrast to research on human pose, shape and texture estimation, training data for endangered species is limited, the animals are in complex natural scenes with occlusion, they are naturally camouflaged, travel in herds, and look similar to each other. To overcome these challenges, we integrate the recent SMAL animal model into a network-based regression pipeline, which we train end-to-end on synthetically generated images with pose, shape, and background variation. Going beyond state-of-the-art methods for human shape and pose estimation, our method learns a shape space for zebras during training. Learning such a shape space from images using only a photometric loss is novel, and the approach can be used to learn shape in other settings with limited 3D supervision. Moreover, we couple 3D pose and shape prediction with the task of texture synthesis, obtaining a full texture map of the animal from a single image. We show that the predicted texture map allows a novel per-instance unsupervised optimization over the network features. This method, SMALST (SMAL with learned Shape and Texture) goes beyond previous work, which assumed manual keypoints and/or segmentation, to regress directly from pixels to 3D animal shape, pose and texture. Code and data are available at https://github.com/silviazuffi/smalst

ps

code pdf supmat iccv19 presentation DOI Project Page [BibTex]

code pdf supmat iccv19 presentation DOI Project Page [BibTex]


EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association
EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Strecke, M., Stückler, J.

Proceedings International Conference on Computer Vision 2019 (ICCV), pages: 5864-5873, IEEE, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 2019 (conference)

ev

preprint Project page Code Poster DOI [BibTex]

preprint Project page Code Poster DOI [BibTex]


no image
Energy Conscious Over-actuated Multi-Agent Payload Transport Robot: Simulations and Preliminary Physical Validation

Tallamraju, R., Verma, P., Sripada, V., Agrawal, S., Karlapalem, K.

28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pages: 1-7, IEEE, 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), October 2019 (conference)

ps

DOI [BibTex]

DOI [BibTex]


Efficient Learning on Point Clouds With Basis Point Sets
Efficient Learning on Point Clouds With Basis Point Sets

Prokudin, S., Lassner, C., Romero, J.

International Conference on Computer Vision, pages: 4332-4341, October 2019 (conference)

Abstract
With an increased availability of 3D scanning technology, point clouds are moving into the focus of computer vision as a rich representation of everyday scenes. However, they are hard to handle for machine learning algorithms due to the unordered structure. One common approach is to apply voxelization, which dramatically increases the amount of data stored and at the same time loses details through discretization. Recently, deep learning models with hand-tailored architectures were proposed to handle point clouds directly and achieve input permutation invariance. However, these architectures use an increased number of parameters and are computationally inefficient. In this work we propose basis point sets as a highly efficient and fully general way to process point clouds with machine learning algorithms. Basis point sets are a residual representation that can be computed efficiently and can be used with standard neural network architectures. Using the proposed representation as the input to a relatively simple network allows us to match the performance of PointNet on a shape classification task while using three order of magnitudes less floating point operations. In a second experiment, we show how proposed representation can be used for obtaining high resolution meshes from noisy 3D scans. Here, our network achieves performance comparable to the state-of-the-art computationally intense multi-step frameworks, in one network pass that can be done in less than 1ms.

ps

code pdf [BibTex]

code pdf [BibTex]


End-to-end Learning for Graph Decomposition
End-to-end Learning for Graph Decomposition

Song, J., Andres, B., Black, M., Hilliges, O., Tang, S.

In International Conference on Computer Vision, pages: 10093-10102, October 2019 (inproceedings)

Abstract
Deep neural networks provide powerful tools for pattern recognition, while classical graph algorithms are widely used to solve combinatorial problems. In computer vision, many tasks combine elements of both pattern recognition and graph reasoning. In this paper, we study how to connect deep networks with graph decomposition into an end-to-end trainable framework. More specifically, the minimum cost multicut problem is first converted to an unconstrained binary cubic formulation where cycle consistency constraints are incorporated into the objective function. The new optimization problem can be viewed as a Conditional Random Field (CRF) in which the random variables are associated with the binary edge labels. Cycle constraints are introduced into the CRF as high-order potentials. A standard Convolutional Neural Network (CNN) provides the front-end features for the fully differentiable CRF. The parameters of both parts are optimized in an end-to-end manner. The efficacy of the proposed learning algorithm is demonstrated via experiments on clustering MNIST images and on the challenging task of real-world multi-people pose estimation.

ps

PDF [BibTex]

PDF [BibTex]


{AMASS}: Archive of Motion Capture as Surface Shapes
AMASS: Archive of Motion Capture as Surface Shapes

Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., Black, M. J.

Proceedings International Conference on Computer Vision, pages: 5442-5451, IEEE, International Conference on Computer Vision (ICCV), October 2019 (conference)

Abstract
Large datasets are the cornerstone of recent advances in computer vision using deep learning. In contrast, existing human motion capture (mocap) datasets are small and the motions limited, hampering progress on learning models of human motion. While there are many different datasets available, they each use a different parameterization of the body, making it difficult to integrate them into a single meta dataset. To address this, we introduce AMASS, a large and varied database of human motion that unifies 15 different optical marker-based mocap datasets by representing them within a common framework and parameterization. We achieve this using a new method, MoSh++, that converts mocap data into realistic 3D human meshes represented by a rigged body model. Here we use SMPL [26], which is widely used and provides a standard skeletal representation as well as a fully rigged surface mesh. The method works for arbitrary marker-sets, while recovering soft-tissue dynamics and realistic hand motion. We evaluate MoSh++ and tune its hyper-parameters using a new dataset of 4D body scans that are jointly recorded with marker-based mocap. The consistent representation of AMASS makes it readily useful for animation, visualization, and generating training data for deep learning. Our dataset is significantly richer than previous human motion collections, having more than 40 hours of motion data, spanning over 300 subjects, more than 11000 motions, and is available for research at https://amass.is.tue.mpg.de/.

ps

code pdf suppl arxiv project website video poster AMASS_Poster DOI [BibTex]

code pdf suppl arxiv project website video poster AMASS_Poster DOI [BibTex]


The Influence of Visual Perspective on Body Size Estimation in Immersive Virtual Reality
The Influence of Visual Perspective on Body Size Estimation in Immersive Virtual Reality

Thaler, A., Pujades, S., Stefanucci, J. K., Creem-Regehr, S. H., Tesch, J., Black, M. J., Mohler, B. J.

In ACM Symposium on Applied Perception, pages: 1-12, ACM, SAP '19: ACM Symposium on Applied Perception 2019, September 2019 (inproceedings)

Abstract
The creation of realistic self-avatars that users identify with is important for many virtual reality applications. However, current approaches for creating biometrically plausible avatars that represent a particular individual require expertise and are time-consuming. We investigated the visual perception of an avatar’s body dimensions by asking males and females to estimate their own body weight and shape on a virtual body using a virtual reality avatar creation tool. In a method of adjustment task, the virtual body was presented in an HTC Vive head-mounted display either co-located with (first-person perspective) or facing (third-person perspective) the participants. Participants adjusted the body weight and dimensions of various body parts to match their own body shape and size. Both males and females underestimated their weight by 10-20% in the virtual body, but the estimates of the other body dimensions were relatively accurate and within a range of ±6%. There was a stronger influence of visual perspective on the estimates for males, but this effect was dependent on the amount of control over the shape of the virtual body, indicating that the results might be caused by where in the body the weight changes expressed themselves. These results suggest that this avatar creation tool could be used to allow participants to make a relatively accurate self-avatar in terms of adjusting body part dimensions, but not weight, and that the influence of visual perspective and amount of control needed over the body shape are likely gender-specific.

ps

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
Learning to Disentangle Latent Physical Factors for Video Prediction

Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.

In Pattern Recognition - Proceedings German Conference on Pattern Recognition (GCPR), Springer International, German Conference on Pattern Recognition (GCPR), September 2019 (inproceedings)

ev

dataset & evaluation code video preprint DOI [BibTex]

dataset & evaluation code video preprint DOI [BibTex]


no image
3D Birds-Eye-View Instance Segmentation

Elich, C., Engelmann, F., Kontogianni, T., Leibe, B.

In Pattern Recognition - Proceedings 41st DAGM German Conference, DAGM GCPR 2019, pages: 48-61, Lecture Notes in Computer Science (LNCS) 11824, (Editors: Fink G.A., Frintrop S., Jiang X.), Springer, 2019 German Conference on Pattern Recognition (GCPR), September 2019, ISSN: 03029743 (inproceedings)

ev

[BibTex]

[BibTex]


Learning to Train with Synthetic Humans
Learning to Train with Synthetic Humans

Hoffmann, D. T., Tzionas, D., Black, M. J., Tang, S.

In German Conference on Pattern Recognition (GCPR), pages: 609-623, Springer International Publishing, September 2019 (inproceedings)

Abstract
Neural networks need big annotated datasets for training. However, manual annotation can be too expensive or even unfeasible for certain tasks, like multi-person 2D pose estimation with severe occlusions. A remedy for this is synthetic data with perfect ground truth. Here we explore two variations of synthetic data for this challenging problem; a dataset with purely synthetic humans, as well as a real dataset augmented with synthetic humans. We then study which approach better generalizes to real data, as well as the influence of virtual humans in the training loss. We observe that not all synthetic samples are equally informative for training, while the informative samples are different for each training stage. To exploit this observation, we employ an adversarial student-teacher framework; the teacher improves the student by providing the hardest samples for its current state as a challenge. Experiments show that this student-teacher framework outperforms all our baselines.

ps

pdf suppl poster link (url) DOI Project Page [BibTex]

pdf suppl poster link (url) DOI Project Page [BibTex]


How do people learn how to plan?
How do people learn how to plan?

Jain, Y. R., Gupta, S., Rakesh, V., Dayan, P., Callaway, F., Lieder, F.

Conference on Cognitive Computational Neuroscience, September 2019 (conference)

Abstract
How does the brain learn how to plan? We reverse-engineer people's underlying learning mechanisms by combining rational process models of cognitive plasticity with recently developed empirical methods that allow us to trace the temporal evolution of people's planning strategies. We find that our Learned Value of Computation model (LVOC) accurately captures people's average learning curve. However, there were also substantial individual differences in metacognitive learning that are best understood in terms of multiple different learning mechanisms-including strategy selection learning. Furthermore, we observed that LVOC could not fully capture people's ability to adaptively decide when to stop planning. We successfully extended the LVOC model to address these discrepancies. Our models broadly capture people's ability to improve their decision mechanisms and represent a significant step towards reverse-engineering how the brain learns increasingly effective cognitive strategies through its interaction with the environment.

re

How do people learn to plan? How do people learn to plan? [BibTex]

How do people learn to plan? How do people learn to plan? [BibTex]


no image
Testing Computational Models of Goal Pursuit

Mohnert, F., Tosic, M., Lieder, F.

CCN2019, September 2019 (conference)

Abstract
Goals are essential to human cognition and behavior. But how do we pursue them? To address this question, we model how capacity limits on planning and attention shape the computational mechanisms of human goal pursuit. We test the predictions of a simple model based on previous theories in a behavioral experiment. The results show that to fully capture how people pursue their goals it is critical to account for people’s limited attention in addition to their limited planning. Our findings elucidate the cognitive constraints that shape human goal pursuit and point to an improved model of human goal pursuit that can reliably predict which goals a person will achieve and which goals they will struggle to pursue effectively.

re

link (url) DOI Project Page [BibTex]


Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems
Predictive Triggering for Distributed Control of Resource Constrained Multi-agent Systems

Mastrangelo, J. M., Baumann, D., Trimpe, S.

In Proceedings of the 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems, pages: 79-84, 8th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys), September 2019 (inproceedings)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Motion Planning for Multi-Mobile-Manipulator Payload Transport Systems
Motion Planning for Multi-Mobile-Manipulator Payload Transport Systems

Tallamraju, R., Salunkhe, D., Rajappa, S., Ahmad, A., Karlapalem, K., Shah, S. V.

In 15th IEEE International Conference on Automation Science and Engineering, pages: 1469-1474, IEEE, 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), August 2019, ISSN: 2161-8089 (inproceedings)

ps

DOI [BibTex]

DOI [BibTex]


no image
Measuring How People Learn How to Plan

Jain, Y. R., Callaway, F., Lieder, F.

Proceedings 41st Annual Meeting of the Cognitive Science Society, pages: 1956-1962, CogSci2019, 41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
The human mind has an unparalleled ability to acquire complex cognitive skills, discover new strategies, and refine its ways of thinking and decision-making; these phenomena are collectively known as cognitive plasticity. One important manifestation of cognitive plasticity is learning to make better–more far-sighted–decisions via planning. A serious obstacle to studying how people learn how to plan is that cognitive plasticity is even more difficult to observe than cognitive strategies are. To address this problem, we develop a computational microscope for measuring cognitive plasticity and validate it on simulated and empirical data. Our approach employs a process tracing paradigm recording signatures of human planning and how they change over time. We then invert a generative model of the recorded changes to infer the underlying cognitive plasticity. Our computational microscope measures cognitive plasticity significantly more accurately than simpler approaches, and it correctly detected the effect of an external manipulation known to promote cognitive plasticity. We illustrate how computational microscopes can be used to gain new insights into the time course of metacognitive learning and to test theories of cognitive development and hypotheses about the nature of cognitive plasticity. Future work will leverage our computational microscope to reverse-engineer the learning mechanisms enabling people to acquire complex cognitive skills such as planning and problem solving.

re

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Effect of Remote Masking on Detection of Electrovibration
Effect of Remote Masking on Detection of Electrovibration

Jamalzadeh, M., Güçlü, B., Vardar, Y., Basdogan, C.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 229-234, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Masking has been used to study human perception of tactile stimuli, including those created on haptic touch screens. Earlier studies have investigated the effect of in-site masking on tactile perception of electrovibration. In this study, we investigated whether it is possible to change detection threshold of electrovibration at fingertip of index finger via remote masking, i.e. by applying a (mechanical) vibrotactile stimulus on the proximal phalanx of the same finger. The masking stimuli were generated by a voice coil (Haptuator). For eight participants, we first measured the detection thresholds for electrovibration at the fingertip and for vibrotactile stimuli at the proximal phalanx. Then, the vibrations on the skin were measured at four different locations on the index finger of subjects to investigate how the mechanical masking stimulus propagated as the masking level was varied. Finally, electrovibration thresholds measured in the presence of vibrotactile masking stimuli. Our results show that vibrotactile masking stimuli generated sub-threshold vibrations around fingertip, and hence did not mechanically interfere with the electrovibration stimulus. However, there was a clear psychophysical masking effect due to central neural processes. Electrovibration absolute threshold increased approximately 0.19 dB for each dB increase in the masking level.

hi

DOI [BibTex]

DOI [BibTex]


no image
Extending Rationality

Pothos, E. M., Busemeyer, J. R., Pleskac, T., Yearsley, J. M., Tenenbaum, J. B., Goodman, N. D., Tessler, M. H., Griffiths, T. L., Lieder, F., Hertwig, R., Pachur, T., Leuker, C., Shiffrin, R. M.

Proceedings of the 41st Annual Conference of the Cognitive Science Society, pages: 39-40, CogSci 2019, July 2019 (conference)

re

Proceedings of the 41st Annual Conference of the Cognitive Science Society [BibTex]

Proceedings of the 41st Annual Conference of the Cognitive Science Society [BibTex]


How should we incentivize learning? An optimal feedback mechanism for educational games and online courses
How should we incentivize learning? An optimal feedback mechanism for educational games and online courses

Xu, L., Wirzberger, M., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
Online courses offer much-needed opportunities for lifelong self-directed learning, but people rarely follow through on their noble intentions to complete them. To increase student retention educational software often uses game elements to motivate students to engage in and persist in learning activities. However, gamification only works when it is done properly, and there is currently no principled method that educational software could use to achieve this. We develop a principled feedback mechanism for encouraging good study choices and persistence in self-directed learning environments. Rather than giving performance feedback, our method rewards the learner's efforts with optimal brain points that convey the value of practice. To derive these optimal brain points, we applied the theory of optimal gamification to a mathematical model of skill acquisition. In contrast to hand-designed incentive structures, optimal brain points are constructed in such a way that the incentive system cannot be gamed. Evaluating our method in a behavioral experiment, we find that optimal brain points significantly increased the proportion of participants who instead of exploiting an inefficient skill they already knew-attempted to learn a difficult but more efficient skill, persisted through failure, and succeeded to master the new skill. Our method provides a principled approach to designing incentive structures and feedback mechanisms for educational games and online courses. We are optimistic that optimal brain points will prove useful for increasing student retention and helping people overcome the motivational obstacles that stand in the way of self-directed lifelong learning.

re

link (url) Project Page [BibTex]


no image
What’s in the Adaptive Toolbox and How Do People Choose From It? Rational Models of Strategy Selection in Risky Choice

Mohnert, F., Pachur, T., Lieder, F.

41st Annual Meeting of the Cognitive Science Society, July 2019 (conference)

Abstract
Although process data indicates that people often rely on various (often heuristic) strategies to choose between risky options, our models of heuristics cannot predict people's choices very accurately. To address this challenge, it has been proposed that people adaptively choose from a toolbox of simple strategies. But which strategies are contained in this toolbox? And how do people decide when to use which decision strategy? Here, we develop a model according to which each person selects decisions strategies rationally from their personal toolbox; our model allows one to infer which strategies are contained in the cognitive toolbox of an individual decision-maker and specifies when she will use which strategy. Using cross-validation on an empirical data set, we find that this rational model of strategy selection from a personal adaptive toolbox predicts people's choices better than any single strategy (even when it is allowed to vary across participants) and better than previously proposed toolbox models. Our model comparisons show that both inferring the toolbox and rational strategy selection are critical for accurately predicting people's risky choices. Furthermore, our model-based data analysis reveals considerable individual differences in the set of strategies people are equipped with and how they choose among them; these individual differences could partly explain why some people make better choices than others. These findings represent an important step towards a complete formalization of the notion that people select their cognitive strategies from a personal adaptive toolbox.

re

link (url) [BibTex]


no image
Measuring How People Learn How to Plan

Jain, Y. R., Callaway, F., Lieder, F.

pages: 357-361, RLDM 2019, July 2019 (conference)

Abstract
The human mind has an unparalleled ability to acquire complex cognitive skills, discover new strategies, and refine its ways of thinking and decision-making; these phenomena are collectively known as cognitive plasticity. One important manifestation of cognitive plasticity is learning to make better – more far-sighted – decisions via planning. A serious obstacle to studying how people learn how to plan is that cognitive plasticity is even more difficult to observe than cognitive strategies are. To address this problem, we develop a computational microscope for measuring cognitive plasticity and validate it on simulated and empirical data. Our approach employs a process tracing paradigm recording signatures of human planning and how they change over time. We then invert a generative model of the recorded changes to infer the underlying cognitive plasticity. Our computational microscope measures cognitive plasticity significantly more accurately than simpler approaches, and it correctly detected the effect of an external manipulation known to promote cognitive plasticity. We illustrate how computational microscopes can be used to gain new insights into the time course of metacognitive learning and to test theories of cognitive development and hypotheses about the nature of cognitive plasticity. Future work will leverage our computational microscope to reverse-engineer the learning mechanisms enabling people to acquire complex cognitive skills such as planning and problem solving.

re

link (url) [BibTex]

link (url) [BibTex]


Event-triggered Pulse Control with Model Learning (if Necessary)
Event-triggered Pulse Control with Model Learning (if Necessary)

Baumann, D., Solowjow, F., Johansson, K. H., Trimpe, S.

In Proceedings of the American Control Conference, pages: 792-797, American Control Conference (ACC), July 2019 (inproceedings)

ics

arXiv PDF Project Page [BibTex]

arXiv PDF Project Page [BibTex]


Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
A Cognitive Tutor for Helping People Overcome Present Bias

Lieder, F., Callaway, F., Jain, Y. R., Krueger, P. M., Das, P., Gul, S., Griffiths, T. L.

RLDM 2019, July 2019, Falk Lieder and Frederick Callaway contributed equally to this publication. (conference)

Abstract
People's reliance on suboptimal heuristics gives rise to a plethora of cognitive biases in decision-making including the present bias, which denotes people's tendency to be overly swayed by an action's immediate costs/benefits rather than its more important long-term consequences. One approach to helping people overcome such biases is to teach them better decision strategies. But which strategies should we teach them? And how can we teach them effectively? Here, we leverage an automatic method for discovering rational heuristics and insights into how people acquire cognitive skills to develop an intelligent tutor that teaches people how to make better decisions. As a proof of concept, we derive the optimal planning strategy for a simple model of situations where people fall prey to the present bias. Our cognitive tutor teaches people this optimal planning strategy by giving them metacognitive feedback on how they plan in a 3-step sequential decision-making task. Our tutor's feedback is designed to maximally accelerate people's metacognitive reinforcement learning towards the optimal planning strategy. A series of four experiments confirmed that training with the cognitive tutor significantly reduced present bias and improved people's decision-making competency: Experiment 1 demonstrated that the cognitive tutor's feedback can help participants discover far-sighted planning strategies. Experiment 2 found that this training effect transfers to more complex environments. Experiment 3 found that these transfer effects are retained for at least 24 hours after the training. Finally, Experiment 4 found that practicing with the cognitive tutor can have additional benefits over being told the strategy in words. The results suggest that promoting metacognitive reinforcement learning with optimal feedback is a promising approach to improving the human mind.

re

DOI [BibTex]

DOI [BibTex]


Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation

Ranjan, A., Jampani, V., Balles, L., Kim, K., Sun, D., Wulff, J., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 12240-12249, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
We address the unsupervised learning of several interconnected problems in low-level vision: single view depth prediction, camera motion estimation, optical flow, and segmentation of a video into the static scene and moving regions. Our key insight is that these four fundamental vision problems are coupled through geometric constraints. Consequently, learning to solve them together simplifies the problem because the solutions can reinforce each other. We go beyond previous work by exploiting geometry more explicitly and segmenting the scene into static and moving regions. To that end, we introduce Competitive Collaboration, a framework that facilitates the coordinated training of multiple specialized neural networks to solve complex problems. Competitive Collaboration works much like expectation-maximization, but with neural networks that act as both competitors to explain pixels that correspond to static or moving regions, and as collaborators through a moderator that assigns pixels to be either static or independently moving. Our novel method integrates all these problems in a common framework and simultaneously reasons about the segmentation of the scene into moving objects and the static background, the camera motion, depth of the static scene structure, and the optical flow of moving objects. Our model is trained without any supervision and achieves state-of-the-art performance among joint unsupervised methods on all sub-problems.

ps

Paper link (url) Project Page Project Page [BibTex]

Paper link (url) Project Page Project Page [BibTex]


Data-driven inference of passivity properties via Gaussian process optimization
Data-driven inference of passivity properties via Gaussian process optimization

Romer, A., Trimpe, S., Allgöwer, F.

In Proceedings of the European Control Conference, European Control Conference (ECC), June 2019 (inproceedings)

ics

PDF [BibTex]

PDF [BibTex]


Local Temporal Bilinear Pooling for Fine-grained Action Parsing
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

ei ps

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision
Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Sanyal, S., Bolkart, T., Feng, H., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 7763-7772, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
The estimation of 3D face shape from a single image must be robust to variations in lighting, head pose, expression, facial hair, makeup, and occlusions. Robustness requires a large training set of in-the-wild images, which by construction, lack ground truth 3D shape. To train a network without any 2D-to-3D supervision, we present RingNet, which learns to compute 3D face shape from a single image. Our key observation is that an individual’s face shape is constant across images, regardless of expression, pose, lighting, etc. RingNet leverages multiple images of a person and automatically detected 2D face features. It uses a novel loss that encourages the face shape to be similar when the identity is the same and different for different people. We achieve invariance to expression by representing the face using the FLAME model. Once trained, our method takes a single image and outputs the parameters of FLAME, which can be readily animated. Additionally we create a new database of faces “not quite in-the-wild” (NoW) with 3D head scans and high-resolution images of the subjects in a wide variety of conditions. We evaluate publicly available methods and find that RingNet is more accurate than methods that use 3D supervision. The dataset, model, and results are available for research purposes.

ps

code pdf preprint link (url) Project Page [BibTex]

code pdf preprint link (url) Project Page [BibTex]


Learning Joint Reconstruction of Hands and Manipulated Objects
Learning Joint Reconstruction of Hands and Manipulated Objects

Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., Schmid, C.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 11807-11816, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Estimating hand-object manipulations is essential for interpreting and imitating human actions. Previous work has made significant progress towards reconstruction of hand poses and object shapes in isolation. Yet, reconstructing hands and objects during manipulation is a more challenging task due to significant occlusions of both the hand and object. While presenting challenges, manipulations may also simplify the problem since the physics of contact restricts the space of valid hand-object configurations. For example, during manipulation, the hand and object should be in contact but not interpenetrate. In this work, we regularize the joint reconstruction of hands and objects with manipulation constraints. We present an end-to-end learnable model that exploits a novel contact loss that favors physically plausible hand-object constellations. Our approach improves grasp quality metrics over baselines, using RGB images as input. To train and evaluate the model, we also propose a new large-scale synthetic dataset, ObMan, with hand-object manipulations. We demonstrate the transferability of ObMan-trained models to real data.

ps

pdf suppl poster link (url) DOI Project Page Project Page [BibTex]

pdf suppl poster link (url) DOI Project Page Project Page [BibTex]


no image
Introducing the Decision Advisor: A simple online tool that helps people overcome cognitive biases and experience less regret in real-life decisions

lawama, G., Greenberg, S., Moore, D., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

Abstract
Cognitive biases shape many decisions people come to regret. To help people overcome these biases, Clear-erThinking.org developed a free online tool, called the Decision Advisor (https://programs.clearerthinking.org/decisionmaker.html). The Decision Advisor assists people in big real-life decisions by prompting them to generate more alternatives, guiding them to evaluate their alternatives according to principles of decision analysis, and educates them about pertinent biases while they are making their decision. In a within-subjects experiment, 99 participants reported significantly fewer biases and less regret for a decision supported by the Decision Advisor than for a previous unassisted decision.

re

DOI [BibTex]

DOI [BibTex]


Trajectory-Based Off-Policy Deep Reinforcement Learning
Trajectory-Based Off-Policy Deep Reinforcement Learning

Doerr, A., Volpp, M., Toussaint, M., Trimpe, S., Daniel, C.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), June 2019 (inproceedings)

Abstract
Policy gradient methods are powerful reinforcement learning algorithms and have been demonstrated to solve many complex tasks. However, these methods are also data-inefficient, afflicted with high variance gradient estimates, and frequently get stuck in local optima. This work addresses these weaknesses by combining recent improvements in the reuse of off-policy data and exploration in parameter space with deterministic behavioral policies. The resulting objective is amenable to standard neural network optimization strategies like stochastic gradient descent or stochastic gradient Hamiltonian Monte Carlo. Incorporation of previous rollouts via importance sampling greatly improves data-efficiency, whilst stochastic optimization schemes facilitate the escape from local optima. We evaluate the proposed approach on a series of continuous control benchmark tasks. The results show that the proposed algorithm is able to successfully and reliably learn solutions using fewer system interactions than standard policy gradient methods.

ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


Expressive Body Capture: 3D Hands, Face, and Body from a Single Image
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A. A. A., Tzionas, D., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 10975-10985, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
To facilitate the analysis of human actions, interactions and emotions, we compute a 3D model of human body pose, hand pose, and facial expression from a single monocular image. To achieve this, we use thousands of 3D scans to train a new, unified, 3D model of the human body, SMPL-X, that extends SMPL with fully articulated hands and an expressive face. Learning to regress the parameters of SMPL-X directly from images is challenging without paired images and 3D ground truth. Consequently, we follow the approach of SMPLify, which estimates 2D features and then optimizes model parameters to fit the features. We improve on SMPLify in several significant ways: (1) we detect 2D features corresponding to the face, hands, and feet and fit the full SMPL-X model to these; (2) we train a new neural network pose prior using a large MoCap dataset; (3) we define a new interpenetration penalty that is both fast and accurate; (4) we automatically detect gender and the appropriate body models (male, female, or neutral); (5) our PyTorch implementation achieves a speedup of more than 8x over Chumpy. We use the new method, SMPLify-X, to fit SMPL-X to both controlled images and images in the wild. We evaluate 3D accuracy on a new curated dataset comprising 100 images with pseudo ground-truth. This is a step towards automatic expressive human capture from monocular RGB data. The models, code, and data are available for research purposes at https://smpl-x.is.tue.mpg.de.

ps

video code pdf suppl poster link (url) DOI Project Page [BibTex]

video code pdf suppl poster link (url) DOI Project Page [BibTex]


no image
The Goal Characteristics (GC) questionannaire: A comprehensive measure for goals’ content, attainability, interestingness, and usefulness

Iwama, G., Wirzberger, M., Lieder, F.

40th Annual Meeting of the Society for Judgement and Decision Making, June 2019 (conference)

Abstract
Many studies have investigated how goal characteristics affect goal achievement. However, most of them considered only a small number of characteristics and the psychometric properties of their measures remains unclear. To overcome these limitations, we developed and validated a comprehensive questionnaire of goal characteristics with four subscales - measuring the goal’s content, attainability, interestingness, and usefulness respectively. 590 participants completed the questionnaire online. A confirmatory factor analysis supported the four subscales and their structure. The GC questionnaire (https://osf.io/qfhup) can be easily applied to investigate goal setting, pursuit and adjustment in a wide range of contexts.

re

DOI [BibTex]


Capture, Learning, and Synthesis of 3D Speaking Styles
Capture, Learning, and Synthesis of 3D Speaking Styles

Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 10101-10111, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019, June 2019 (inproceedings)

Abstract
Audio-driven 3D facial animation has been widely explored, but achieving realistic, human-like performance is still unsolved. This is due to the lack of available 3D datasets, models, and standard evaluation metrics. To address this, we introduce a unique 4D face dataset with about 29 minutes of 4D scans captured at 60 fps and synchronized audio from 12 speakers. We then train a neural network on our dataset that factors identity from facial motion. The learned model, VOCA (Voice Operated Character Animation) takes any speech signal as input—even speech in languages other than English—and realistically animates a wide range of adult faces. Conditioning on subject labels during training allows the model to learn a variety of realistic speaking styles. VOCA also provides animator controls to alter speaking style, identity-dependent facial shape, and pose (i.e. head, jaw, and eyeball rotations) during animation. To our knowledge, VOCA is the only realistic 3D facial animation model that is readily applicable to unseen subjects without retargeting. This makes VOCA suitable for tasks like in-game video, virtual reality avatars, or any scenario in which the speaker, speech, or language is not known in advance. We make the dataset and model available for research purposes at http://voca.is.tue.mpg.de.

ps

code Project Page video paper [BibTex]

code Project Page video paper [BibTex]


Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


no image
A Clustering Approach to Categorizing 7 Degree-of-Freedom Arm Motions during Activities of Daily Living

Gloumakov, Y., Spiers, A. J., Dollar, A. M.

In Proceedings of the International Conference on Robotics and Automation (ICRA), pages: 7214-7220, Montreal, Canada, May 2019 (inproceedings)

Abstract
In this paper we present a novel method of categorizing naturalistic human arm motions during activities of daily living using clustering techniques. While many current approaches attempt to define all arm motions using heuristic interpretation, or a combination of several abstract motion primitives, our unsupervised approach generates a hierarchical description of natural human motion with well recognized groups. Reliable recommendation of a subset of motions for task achievement is beneficial to various fields, such as robotic and semi-autonomous prosthetic device applications. The proposed method makes use of well-known techniques such as dynamic time warping (DTW) to obtain a divergence measure between motion segments, DTW barycenter averaging (DBA) to get a motion average, and Ward's distance criterion to build the hierarchical tree. The clusters that emerge summarize the variety of recorded motions into the following general tasks: reach-to-front, transfer-box, drinking from vessel, on-table motion, turning a key or door knob, and reach-to-back pocket. The clustering methodology is justified by comparing against an alternative measure of divergence using Bezier coefficients and K-medoids clustering.

hi

DOI [BibTex]

DOI [BibTex]


Accurate Vision-based Manipulation through Contact Reasoning
Accurate Vision-based Manipulation through Contact Reasoning

Kloss, A., Bauza, M., Wu, J., Tenenbaum, J. B., Rodriguez, A., Bohg, J.

In International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted

Abstract
Planning contact interactions is one of the core challenges of many robotic tasks. Optimizing contact locations while taking dynamics into account is computationally costly and in only partially observed environments, executing contact-based tasks often suffers from low accuracy. We present an approach that addresses these two challenges for the problem of vision-based manipulation. First, we propose to disentangle contact from motion optimization. Thereby, we improve planning efficiency by focusing computation on promising contact locations. Second, we use a hybrid approach for perception and state estimation that combines neural networks with a physically meaningful state representation. In simulation and real-world experiments on the task of planar pushing, we show that our method is more efficient and achieves a higher manipulation accuracy than previous vision-based approaches.

am

Video link (url) [BibTex]

Video link (url) [BibTex]


Improving Haptic Adjective Recognition with Unsupervised Feature Learning
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Learning Latent Space Dynamics for Tactile Servoing
Learning Latent Space Dynamics for Tactile Servoing

Sutanto, G., Ratliff, N., Sundaralingam, B., Chebotar, Y., Su, Z., Handa, A., Fox, D.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings) Accepted

am

pdf video [BibTex]

pdf video [BibTex]


Leveraging Contact Forces for Learning to Grasp
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks
Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

(Best Paper Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, pages: 97-108, 10th ACM/IEEE International Conference on Cyber-Physical Systems, April 2019 (inproceedings)

Abstract
Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals below 100 ms. Low-power wireless is preferred for its flexibility, low cost, and small form factor, especially if the devices support multi-hop communication. Thus far, however, closed-loop control over multi-hop low-power wireless has only been demonstrated for update intervals on the order of multiple seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance such as jitter or packet loss, and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for linear dynamic systems. Using experiments on a testbed with multiple cart-pole systems, we are the first to demonstrate the feasibility and to assess the performance of closed-loop control and coordination over multi-hop low-power wireless for update intervals from 20 ms to 50 ms.

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]