Header logo is


2014


no image
Haptic Robotization of Human Body via Data-Driven Vibrotactile Feedback

Kurihara, Y., Takei, S., Nakai, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

Entertainment Computing, 5(4):485-494, December 2014 (article)

hi

[BibTex]

2014


[BibTex]


no image
Wenn es was zu sagen gibt

(Klaus Tschira Award 2014 in Computer Science)

Trimpe, S.

Bild der Wissenschaft, pages: 20-23, November 2014, (popular science article in German) (article)

am ics

PDF Project Page [BibTex]

PDF Project Page [BibTex]


no image
Automatic Skill Evaluation for a Needle Passing Task in Robotic Surgery

Leung, S., Kuchenbecker, K. J.

In Proc. IROS Workshop on the Role of Human Sensorimotor Control in Robotic Surgery, Chicago, Illinois, sep 2014, Poster presentation given by Kuchenbecker. Best Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Modeling and Rendering Realistic Textures from Unconstrained Tool-Surface Interactions

Culbertson, H., Unwin, J., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 7(3):381-292, July 2014 (article)

hi

[BibTex]

[BibTex]


no image
A Data-driven Approach to Remote Tactile Interaction: From a BioTac Sensor to Any Fingertip Cutaneous Device

Pacchierotti, C., Prattichizzo, D., Kuchenbecker, K. J.

In Haptics: Neuroscience, Devices, Modeling, and Applications, Proc. EuroHaptics, Part I, 8618, pages: 418-424, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, June 2014, Poster presentation given by Pacchierotti in Versailles, France (inproceedings)

hi

[BibTex]

[BibTex]


no image
Evaluating the BioTac’s Ability to Detect and Characterize Lumps in Simulated Tissue

Hui, J. C. T., Kuchenbecker, K. J.

In Haptics: Neuroscience, Devices, Modeling, and Applications, Proc. EuroHaptics, Part II, 8619, pages: 295-302, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, June 2014, Poster presentation given by Hui in Versailles, France (inproceedings)

hi

[BibTex]

[BibTex]


no image
Teaching Forward and Inverse Kinematics of Robotic Manipulators Via MATLAB

Wong, D., Dames, P., J. Kuchenbecker, K.

June 2014, Presented at {\em ICRA Workshop on {MATLAB/Simulink} for Robotics Education and Research}. Oral presentation given by {Dames} and {Wong} (misc)

hi

[BibTex]

[BibTex]


no image
Analyzing Human High-Fives to Create an Effective High-Fiving Robot

Fitter, N. T., Kuchenbecker, K. J.

In Proc. ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages: 156-157, Bielefeld, Germany, March 2014, Poster presentation given by Fitter (inproceedings)

hi

[BibTex]

[BibTex]


no image
Dynamic Modeling and Control of Voice-Coil Actuators for High-Fidelity Display of Haptic Vibrations

McMahan, W., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 115-122, Houston, Texas, USA, February 2014, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
A Wearable Device for Controlling a Robot Gripper With Fingertip Contact, Pressure, Vibrotactile, and Grip Force Feedback

Pierce, R. M., Fedalei, E. A., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 19-25, Houston, Texas, USA, February 2014, Oral presentation given by Pierce (inproceedings)

hi

[BibTex]

[BibTex]


no image
Methods for Robotic Tool-Mediated Haptic Surface Recognition

Romano, J. M., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 49-56, Houston, Texas, USA, February 2014, Oral presentation given by Kuchenbecker. Finalist for Best Paper Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
Control of a Virtual Robot with Fingertip Contact, Pressure, Vibrotactile, and Grip Force Feedback

Pierce, R. M., Fedalei, E. A., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Houston, Texas, USA, February 2014 (misc)

hi

[BibTex]

[BibTex]


no image
One Hundred Data-Driven Haptic Texture Models and Open-Source Methods for Rendering on 3D Objects

Culbertson, H., Delgado, J. J. L., Kuchenbecker, K. J.

In Proc. IEEE Haptics Symposium, pages: 319-325, Houston, Texas, USA, February 2014, Poster presentation given by Culbertson. Finalist for Best Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


no image
A Modular Tactile Motion Guidance System

Kuchenbecker, K. J., Anon, A. M., Barkin, T., deVillafranca, K., Lo, M.

Hands-on demonstration presented at IEEE Haptics Symposium, Houston, Texas, USA, February 2014 (misc)

hi

[BibTex]

[BibTex]


no image
The Penn Haptic Texture Toolkit

Culbertson, H., Delgado, J. J. L., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Houston, Texas, USA, February 2014 (misc)

hi

[BibTex]

[BibTex]


Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot
Roombots: A hardware perspective on 3D self-reconfiguration and locomotion with a homogeneous modular robot

Spröwitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A. J.

{Robotics and Autonomous Systems}, 62(7):1016-1033, Elsevier, Amsterdam, 2014 (article)

Abstract
In this work we provide hands-on experience on designing and testing a self-reconfiguring modular robotic system, Roombots (RB), to be used among others for adaptive furniture. In the long term, we envision that RB can be used to create sets of furniture, such as stools, chairs and tables that can move in their environment and that change shape and functionality during the day. In this article, we present the first, incremental results towards that long term vision. We demonstrate locomotion and reconfiguration of single and metamodule RB over 3D surfaces, in a structured environment equipped with embedded connection ports. RB assemblies can move around in non-structured environments, by using rotational or wheel-like locomotion. We show a proof of concept for transferring a Roombots metamodule (two in-series coupled RB modules) from the non-structured environment back into the structured grid, by aligning the RB metamodule in an entrapment mechanism. Finally, we analyze the remaining challenges to master the full Roombots scenario, and discuss the impact on future Roombots hardware.

dlg

DOI [BibTex]

DOI [BibTex]


no image
A Self-Tuning LQR Approach Demonstrated on an Inverted Pendulum

Trimpe, S., Millane, A., Doessegger, S., D’Andrea, R.

In Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 2014 (inproceedings)

am ics

PDF Supplementary material DOI [BibTex]

PDF Supplementary material DOI [BibTex]


Automatic Generation of Reduced CPG Control Networks for Locomotion of Arbitrary Modular Robot Structures
Automatic Generation of Reduced CPG Control Networks for Locomotion of Arbitrary Modular Robot Structures

Bonardi, S., Vespignani, M., Möckel, R., Van den Kieboom, J., Pouya, S., Spröwitz, A., Ijspeert, A.

In Proceedings of Robotics: Science and Systems, University of California, Barkeley, 2014 (inproceedings)

Abstract
The design of efficient locomotion controllers for arbitrary structures of reconfigurable modular robots is challenging because the morphology of the structure can change dynamically during the completion of a task. In this paper, we propose a new method to automatically generate reduced Central Pattern Generator (CPG) networks for locomotion control based on the detection of bio-inspired sub-structures, like body and limbs, and articulation joints inside the robotic structure. We demonstrate how that information, coupled with the potential symmetries in the structure, can be used to speed up the optimization of the gaits and investigate its impact on the solution quality (i.e. the velocity of the robotic structure and the potential internal collisions between robotic modules). We tested our approach on three simulated structures and observed that the reduced network topologies in the first iterations of the optimization process performed significantly better than the fully open ones.

dlg

DOI [BibTex]

DOI [BibTex]


no image
A Limiting Property of the Matrix Exponential

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(4):1105-1110, 2014 (article)

am ics

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Event-Based State Estimation With Variance-Based Triggering

Trimpe, S., D’Andrea, R.

IEEE Transactions on Automatic Control, 59(12):3266-3281, 2014 (article)

am ics

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


no image
Cutaneous Feedback of Planar Fingertip Deformation and Vibration on a da Vinci Surgical Robot

Pacchierotti, C., Shirsat, P., Koehn, J. K., Prattichizzo, D., Kuchenbecker, K. J.

In Proc. IROS Workshop on the Role of Human Sensorimotor Control in Robotic Surgery, Chicago, Illinois, 2014, Poster presentation given by Koehn (inproceedings)

hi

[BibTex]

[BibTex]


no image
Stability Analysis of Distributed Event-Based State Estimation

Trimpe, S.

In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, 2014 (inproceedings)

Abstract
An approach for distributed and event-based state estimation that was proposed in previous work [1] is analyzed and extended to practical networked systems in this paper. Multiple sensor-actuator-agents observe a dynamic process, sporadically exchange their measurements over a broadcast network according to an event-based protocol, and estimate the process state from the received data. The event-based approach was shown in [1] to mimic a centralized Luenberger observer up to guaranteed bounds, under the assumption of identical estimates on all agents. This assumption, however, is unrealistic (it is violated by a single packet drop or slight numerical inaccuracy) and removed herein. By means of a simulation example, it is shown that non-identical estimates can actually destabilize the overall system. To achieve stability, the event-based communication scheme is supplemented by periodic (but infrequent) exchange of the agentsâ?? estimates and reset to their joint average. When the local estimates are used for feedback control, the stability guarantee for the estimation problem extends to the event-based control system.

am ics

PDF Supplementary material DOI Project Page [BibTex]

PDF Supplementary material DOI Project Page [BibTex]


Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs
Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs

Spröwitz, A. T., Ajallooeian, M., Tuleu, A., Ijspeert, A. J.

Frontiers in Computational Neuroscience, 8(27):1-13, 2014 (article)

Abstract
In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95\% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

dlg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Smart@load? Modeling interruption while using a Smartphone-app in alternating workload conditions

Wirzberger, M.

TU Berlin, 2014 (mastersthesis)

Abstract
Based on a time course model of interruption and resumption, the current thesis aims to inspect cognitive processes after being interrupted by product advertisements while performing a shopping task with a smartphone application. In doing so, different levels of mental workload, which are assumed to influence human performance as well as resumption strategy choice in this context, are taken into account. Within the applied research approach, cognitive modeling in the framework of the cognitive architecture ACT-R is combined with the development of a corresponding experimental design. The derived model predictions are validated with a 2x3-factorial design that includes repeated measures upon the second factor, and consists of 62 human participants. In detail, the influence of mental workload (high vs. low) and interruption (no vs. low vs. high) on various aspects of task-related performance and the applied resumption strategy is assessed. While the inspected performance parameters and resumption strategy choice usually point towards the expected direction for the model data, a converse pattern for the human data shows up in most cases. Comparing model and human data for each level of workload displays rather mixed results that are discussed afterwards. An outline of potential expansions and toeholds for future research within and beyond the mobile sector forms the completion of the thesis.

re

DOI [BibTex]


no image
Algorithm selection by rational metareasoning as a model of human strategy selection

Lieder, F., Plunkett, D., Hamrick, J. B., Russell, S. J., Hay, N. J., Griffiths, T. L.

In Advances in Neural Information Processing Systems 27, 2014 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
"I don’t need it!" – Modeling ad-induced interruption while using a Smartphone-app

Wirzberger, M., Russwinkel, N.

CrossWorlds 2014: Theory, Development and Evaluation of Social Technology, 2014 (conference)

re

DOI [BibTex]

DOI [BibTex]


no image
"Keep green!" – Nachhaltige Förderung ökologischen Fahrens durch Simulatortraining? ["Keep green!" – Promoting ecological driving through simulator training in a sustainable manner?]

Wirzberger, M., Lüderitz, C., Rohrer, S., Karrer-Gauß, K.

In 49th Conference of the German Psychological Society. Abstracts, pages: 570, Pabst Science Publishers, Lengerich, 2014 (inproceedings)

re

[BibTex]

[BibTex]


no image
The high availability of extreme events serves resource-rational decision-making

Lieder, F., Hsu, M., Griffiths, T. L.

In Proceedings of the 36th Annual Conference of the Cognitive Science Society, 2014 (inproceedings)

re

[BibTex]

[BibTex]


no image
Layers of Abstraction: (Neuro)computational models of learning local and global statistical regularities

Diaconescu, A., Lieder, F., Mathys, C., Stephan, K. E.

In 20th Annual Meeting of the Organization for Human Brain Mapping, 2014 (inproceedings)

re

[BibTex]

[BibTex]


no image
Modeling of cognitive aspects of mobile interaction

Russwinkel, N., Prezenski, S., Lindner, S., Halbrügge, M., Schulz, M., Wirzberger, M.

Cognitive Processing, 15(Suppl.1), pages: S22-S24, Springer Nature, 2014 (article)

re

DOI [BibTex]

DOI [BibTex]

2004


no image
Canceling Induced Master Motion in Force-Reflecting Teleoperation

Kuchenbecker, K. J., Niemeyer, G.

In Proc. ASME International Mechanical Engineering Congress and Exposition, Symposium on Advances in Robot Dynamics and Control, 2, paper number 60049, Anaheim, California, USA, November 2004, Oral presentation given by Kuchenbecker. {B}est Student Paper Award (inproceedings)

hi

[BibTex]

2004


[BibTex]


no image
Haptic Display of Contact Location

Kuchenbecker, K. J., Provancher, W. R., Niemeyer, G., Cutkosky, M. R.

In Proc. IEEE Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pages: 40-47, Chicago, Illinois, USA, March 2004, Oral presentation given by Kuchenbecker (inproceedings)

hi

[BibTex]

[BibTex]


no image
THUMP: An Immersive Haptic Console for Surgical Simulation and Training

Niemeyer, G., Kuchenbecker, K. J., Bonneau, R., Mitra, P., Reid, A., Fiene, J., Weldon, G.

In Proc. Medicine Meets Virtual Reality, pages: 272-274, Newport Beach, California, USA, January 2004, Poster presentation given by Niemeyer. {B}est Poster Award (inproceedings)

hi

[BibTex]

[BibTex]


Simple and low-cost compliant leg-foot system
Simple and low-cost compliant leg-foot system

Meyer, F., Spröwitz, A., Lungarella, M., Berthouze, L.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), 1, pages: 515-520, IEEE, Sendai, Japan, 2004 (inproceedings)

Abstract
We present the design of a simple and low- cost humanoid leg-foot system featuring compliant joints and springy feet. The mechanical compliance of the individual joints can be adjusted by means of visco-elastic material, or metal. To explore some of the relevant characteristics of the proposed system, we performed a series of experiments in which the leg was dropped from a fixed height. Combinations of different materials in the joints (silicone rubber, latex, and brass) as well as a rigid or a compliant foot were used. Additional data were obtained through of a Lagrangian analysis of the leg-foot system. Our analyses show that compliant joints not only reduce impactive forces, but also induce smoother joint trajectories. Further, by employing a compliant foot, a higher energy efficiency for the movement is achieved.

dlg

DOI [BibTex]

DOI [BibTex]