Header logo is


2020


no image
Measuring the Costs of Planning

Felso, V., Jain, Y. R., Lieder, F.

CogSci 2020, July 2020 (poster) Accepted

Abstract
Which information is worth considering depends on how much effort it would take to acquire and process it. From this perspective people’s tendency to neglect considering the long-term consequences of their actions (present bias) might reflect that looking further into the future becomes increasingly more effortful. In this work, we introduce and validate the use of Bayesian Inverse Reinforcement Learning (BIRL) for measuring individual differences in the subjective costs of planning. We extend the resource-rational model of human planning introduced by Callaway, Lieder, et al. (2018) by parameterizing the cost of planning. Using BIRL, we show that increased subjective cost for considering future outcomes may be associated with both the present bias and acting without planning. Our results highlight testing the causal effects of the cost of planning on both present bias and mental effort avoidance as a promising direction for future work.

re

[BibTex]

2020


[BibTex]


Biocompatible magnetic micro‐ and nanodevices: Fabrication of FePt nanopropellers and cell transfection
Biocompatible magnetic micro‐ and nanodevices: Fabrication of FePt nanopropellers and cell transfection

Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G., Gutierrez, M. G., Fischer, P.

Adv. Mat., 32(2001114), May 2020 (article)

Abstract
The application of nanoparticles for drug or gene delivery promises benefits in the form of single‐cell‐specific therapeutic and diagnostic capabilities. Many methods of cell transfection rely on unspecific means to increase the transport of genetic material into cells. Targeted transport is in principle possible with magnetically propelled micromotors, which allow responsive nanoscale actuation and delivery. However, many commonly used magnetic materials (e.g., Ni and Co) are not biocompatible, possess weak magnetic remanence (Fe3O4), or cannot be implemented in nanofabrication schemes (NdFeB). Here, it is demonstrated that co‐depositing iron (Fe) and platinum (Pt) followed by one single annealing step, without the need for solution processing, yields ferromagnetic FePt nanomotors that are noncytotoxic, biocompatible, and possess a remanence and magnetization that rival those of permanent NdFeB micromagnets. Active cell targeting and magnetic transfection of lung carcinoma cells are demonstrated using gradient‐free rotating millitesla fields to drive the FePt nanopropellers. The carcinoma cells express enhanced green fluorescent protein after internalization and cell viability is unaffected by the presence of the FePt nanopropellers. The results establish FePt, prepared in the L10 phase, as a promising magnetic material for biomedical applications with superior magnetic performance, especially for micro‐ and nanodevices.

pf mms

link (url) DOI [BibTex]


no image
Automatic Discovery of Interpretable Planning Strategies

Skirzyński, J., Becker, F., Lieder, F.

May 2020 (article) Submitted

Abstract
When making decisions, people often overlook critical information or are overly swayed by irrelevant information. A common approach to mitigate these biases is to provide decisionmakers, especially professionals such as medical doctors, with decision aids, such as decision trees and flowcharts. Designing effective decision aids is a difficult problem. We propose that recently developed reinforcement learning methods for discovering clever heuristics for good decision-making can be partially leveraged to assist human experts in this design process. One of the biggest remaining obstacles to leveraging the aforementioned methods for improving human decision-making is that the policies they learn are opaque to people. To solve this problem, we introduce AI-Interpret: a general method for transforming idiosyncratic policies into simple and interpretable descriptions. Our algorithm combines recent advances in imitation learning and program induction with a new clustering method for identifying a large subset of demonstrations that can be accurately described by a simple, high-performing decision rule. We evaluate our new AI-Interpret algorithm and employ it to translate information-acquisition policies discovered through metalevel reinforcement learning. The results of three large behavioral experiments showed that the provision of decision rules as flowcharts significantly improved people’s planning strategies and decisions across three different classes of sequential decision problems. Furthermore, a series of ablation studies confirmed that our AI-Interpret algorithm was critical to the discovery of interpretable decision rules and that it is ready to be applied to other reinforcement learning problems. We conclude that the methods and findings presented in this article are an important step towards leveraging automatic strategy discovery to improve human decision-making.

re

Automatic Discovery of Interpretable Planning Strategies The code for our algorithm and the experiments is available [BibTex]


no image
Advancing Rational Analysis to the Algorithmic Level

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E27, March 2020 (article)

Abstract
The commentaries raised questions about normativity, human rationality, cognitive architectures, cognitive constraints, and the scope or resource rational analysis (RRA). We respond to these questions and clarify that RRA is a methodological advance that extends the scope of rational modeling to understanding cognitive processes, why they differ between people, why they change over time, and how they could be improved.

re

Advancing rational analysis to the algorithmic level DOI [BibTex]

Advancing rational analysis to the algorithmic level DOI [BibTex]


no image
Learning to Overexert Cognitive Control in a Stroop Task

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

Febuary 2020, Laura Bustamante and Falk Lieder contributed equally to this publication. (article) In revision

Abstract
How do people learn when to allocate how much cognitive control to which task? According to the Learned Value of Control (LVOC) model, people learn to predict the value of alternative control allocations from features of a given situation. This suggests that people may generalize the value of control learned in one situation to other situations with shared features, even when the demands for cognitive control are different. This makes the intriguing prediction that what a person learned in one setting could, under some circumstances, cause them to misestimate the need for, and potentially over-exert control in another setting, even if this harms their performance. To test this prediction, we had participants perform a novel variant of the Stroop task in which, on each trial, they could choose to either name the color (more control-demanding) or read the word (more automatic). However only one of these tasks was rewarded, it changed from trial to trial, and could be predicted by one or more of the stimulus features (the color and/or the word). Participants first learned colors that predicted the rewarded task. Then they learned words that predicted the rewarded task. In the third part of the experiment, we tested how these learned feature associations transferred to novel stimuli with some overlapping features. The stimulus-task-reward associations were designed so that for certain combinations of stimuli the transfer of learned feature associations would incorrectly predict that more highly rewarded task would be color naming, which would require the exertion of control, even though the actually rewarded task was word reading and therefore did not require the engagement of control. Our results demonstrated that participants over-exerted control for these stimuli, providing support for the feature-based learning mechanism described by the LVOC model.

re

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]

Learning to Overexert Cognitive Control in a Stroop Task DOI [BibTex]


Toward a Formal Theory of Proactivity
Toward a Formal Theory of Proactivity

Lieder, F., Iwama, G.

January 2020 (article) Submitted

Abstract
Beyond merely reacting to their environment and impulses, people have the remarkable capacity to proactively set and pursue their own goals. But the extent to which they leverage this capacity varies widely across people and situations. The goal of this article is to make the mechanisms and variability of proactivity more amenable to rigorous experiments and computational modeling. We proceed in three steps. First, we develop and validate a mathematically precise behavioral measure of proactivity and reactivity that can be applied across a wide range of experimental paradigms. Second, we propose a formal definition of proactivity and reactivity, and develop a computational model of proactivity in the AX Continuous Performance Task (AX-CPT). Third, we develop and test a computational-level theory of meta-control over proactivity in the AX-CPT that identifies three distinct meta-decision-making problems: intention setting, resolving response conflict between intentions and automaticity, and deciding whether to recall context and intentions into working memory. People's response frequencies in the AX-CPT were remarkably well captured by a mixture between the predictions of our models of proactive and reactive control. Empirical data from an experiment varying the incentives and contextual load of an AX-CPT confirmed the predictions of our meta-control model of individual differences in proactivity. Our results suggest that proactivity can be understood in terms of computational models of meta-control. Our model makes additional empirically testable predictions. Future work will extend our models from proactive control in the AX-CPT to proactive goal creation and goal pursuit in the real world.

re

Toward a formal theory of proactivity DOI Project Page [BibTex]


no image
Effect of the soft layer thickness of magnetization reversal process of exchange-spring nanomagnet patterns

Son, K., Schütz, G., Goering, E.

{Current Applied Physics}, 20(4):477-483, Elsevier B.V., Amsterdam, 2020 (article)

mms

DOI [BibTex]


{Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination}
Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination

Guang, Y., Bykova, I., Liu, Y., Yu, G., Goering, E., Weigand, M., Gräfe, J., Kim, S. K., Zhang, J., Zhang, H., Yan, Z., Wan, C., Feng, J., Wang, X., Guo, C., Wei, H., Peng, Y., Tserkovnyak, Y., Han, X., Schütz, G.

{Nature Communications}, 11, Nature Publishing Group, London, 2020 (article)

Abstract
Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders.

mms

DOI [BibTex]

DOI [BibTex]


{Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications}
Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications

Murzin, D. V., Belyaev, V. K., Groß, F., Gräfe, J., Rivas, M., Rodionova, V. V.

{Japanese Journal of Applied Physics}, 59(SE), IOP Publishing Ltd, Bristol, England, 2020 (article)

Abstract
Miniature magnetic sensors based on magnetoplasmonic crystals (MPlCs) exhibit high sensitivity and high spatial resolution, which can be obtained by the excitation of surface plasmon polaritons. A field dependence of surface plasmon polaritons' enhanced magneto-optical response strongly correlates with magnetic properties of MPlCs that can be tuned by changing spatial parameters, such as the period and height of diffraction gratings and thicknesses of functional layers. This work compares the magnetic properties of MPlCs based on Ni80Fe20 (permalloy) obtained from local (longitudinal magneto-optical Kerr effect) and bulk (vibrating-sample magnetometry) measurements and demonstrates an ability to control sensors' performance through changing the magnetic properties of the MPlCs. The influence of the substrate's geometry (planar or sinusoidal and trapezoidal diffraction grating profiles) and the thickness of the surface layer is examined.

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-resolved study of the evolution of magnetic response in FexN compounds

Chen, Y., Gölden, D., Dirba, I., Huang, M., Gutfleisch, O., Nagel, P., Merz, M., Schuppler, S., Schütz, G., Alff, L., Goering, E.

{Journal of Magnetism and Magnetic Materials}, 498, NH, Elsevier, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of temperature and drive current in skyrmion dynamics

Litzius, K., Leliaert, J., Bassirian, P., Rodrigues, D., Kromin, S., Lemesh, I., Zazvorka, J., Lee, K., Mulkers, J., Kerber, N., Heinze, D., Keil, N., Reeve, R. M., Weigand, M., Van Waeyenberge, B., Schütz, G., Everschor-Sitte, K., Beach, G. S. D., Kläui, M.

{Nature Electronics}, 3(1):30-36, Springer Nature, London, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic flux penetration into micron-sized superconductor/ferromagnet bilayers

Simmendinger, J., Weigand, M., Schütz, G., Albrecht, J.

{Superconductor Science and Technology}, 33(2), IOP Pub., Bristol, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications
Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A. A., Park, I., Sitti, M., Amjadi, M.

Advanced Intelligent Systems, 2020 (article)

bio pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Demonstration of k-vector selective microscopy for nanoscale mapping of higher order spin wave modes

Träger, N., Gruszecki, P., Lisiecki, F., Groß, F., Förster, J., Weigand, M., Glowinski, H., Kuswik, P., Dubowik, J., Krawczyk, M., Gräfe, J.

Nanoscale, 12(33):17238-17244, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Research trend of metal-organic frameworks for magnetic refrigeration materials application

Kim, S., Son, K., Oh, H.

Korean Journal of Materials Research, 30(3):136-141, Materials Society of Korea, Seoul, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)
Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)

Denecke, R., Welke, M., Huth, P., Gräfe, J., Brachwitz, K., Lorenz, M., Grundmann, M., Ziese, M., Esquinazi, P. D., Goering, E., Schütz, G., Schindler, K., Chassé, A.

Physica Status Solidi (b), 257(7):1900627, 2020 (article)

Abstract
Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID), X-ray absorption spectroscopy with subsequent X-ray magnetic circular dichroism (XMCD) and magneto-optic Kerr effect (MOKE). Hysteresis loops derived from SQUID exhibits bulk-like properties. This can further be confirmed by bulk-like XMCD spectra. In remanent magnetization, an in-plane magnetization with basically no out-of-plane component is found. The magnetic moments derived by the sum rule formalism from the XMCD data are in good agreement to the magnetization observed by SQUID and MOKE. XMCD as well as MOKE reveal an in-plane angular fourfold magnetic anisotropy with the easy direction along [110] for (Mn0.5Zn0.5)Fe2O4 on SrTiO3. The element-specific magnetic moments from XMCD show a stronger contribution of Fe to the anisotropy than of Mn and distinct contributions of the orbital moments.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
How to functionalise metal-organic frameworks to enable guest nanocluster embedment

King, J., Zhang, L., Doszczeczko, S., Sambalova, O., Luo, H., Rohman, F., Phillips, O., Borgschulte, A., Hirscher, M., Addicoat, M., Szilágyi, P. A.

{Journal of Materials Chemistry A}, 8(9):4889-4897, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic and microstructural properties of anisotropic MnBi magnets compacted by spark plasma sintering

Chen, Y., Gregori, G., Rheingans, B., Huang, W., Kronmüller, H., Schütz, G., Goering, E.

{Journal of Alloys and Compounds}, 830, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model

Wolf, Z., Jusufi, A., Vogt, D. M., Lauder, G. V.

Bioinspiration & Biomimetics, 15(4):046008, Inst. of Physics, London, 2020 (article)

bio

DOI [BibTex]

DOI [BibTex]


no image
Biocompatible magnetic micro- and nanodevices: Fabrication of FePt nanopropellers and cell transfection

Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G., Gutierrez, M. G., Fischer, P.

Advanced Materials, 32(25), Wiley-VCH, Weinheim, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Generation and characterization of focused helical x-ray beams

Loetgering, L., Baluktsian, M., Keskinbora, K., Horstmeyer, R., Wilhein, T., Schütz, G., Eikema, K. S. E., Witte, S.

Science Advances, 6(7), American Association for the Advancement of Science, 2020 (article)

mms

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]


no image
Materials for hydrogen-based energy storage - past, recent progress and future outlook

Hirscher, M., Yartys, V. A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman Jr., R. C., Broom, D. P., Buckley, C. E., Chang, F., Chen, P., Cho, Y. W., Crivello, J., Cuevas, F., David, W. I. F., de Jongh, P. E., Denys, R. V., Dornheim, M., Felderhoff, M., Filinchuk, Y., Froudakis, G. E., Grant, D. M., Gray, E. M., Hauback, B. C., He, T., Humphries, T. D., Jensen, T. R., Kim, S., Kojima, Y., Latroche, M., Li, H., Lotostskyy, M. V., Makepeace, J. W., M\oller, K. T., Naheed, L., Ngene, P., Noréus, D., Nyg\aard, M. M., Orimo, S., Paskevicius, M., Pasquini, L., Ravnsbaek, D. B., Sofianos, M. V., Udovic, T. J., Vegge, T., Walker, G. S., Webb, C. J., Weidenthaler, C., Zlotea, C.

{Journal of Alloys and Compounds}, 827, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy}
Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy

Büttner, F., Mawass, M. A., Bauer, J., Rosenberg, E., Caretta, L., Avci, C. O., Gräfe, J., Finizio, S., Vaz, C. A. F., Novakovic, N., Weigand, M., Litzius, K., Förster, J., Träger, N., Groß, F., Suzuki, D., Huang, M., Bartell, J., Kronast, F., Raabe, J., Schütz, G., Ross, C. A., Beach, G. S. D.

{Physical Review Materials}, 4(1), American Physical Society, College Park, MD, 2020 (article)

Abstract
Ferrimagnetic iron garnets are promising materials for spintronics applications, characterized by ultralow damping and zero current shunting. It has recently been found that few nm-thick garnet films interfaced with a heavy metal can also exhibit sizable interfacial spin-orbit interactions, leading to the emergence, and efficient electrical control, of one-dimensional chiral domain walls. Two-dimensional bubbles, by contrast, have so far only been confirmed in micrometer-thick films. Here, we show by high resolution scanning transmission x-ray microscopy and photoemission electron microscopy that submicrometer bubbles can be nucleated and stabilized in ∼25-nm-thick thulium iron garnet films via short heat pulses generated by electric current in an adjacent Pt strip, or by ultrafast laser illumination. We also find that quasistatic processes do not lead to the formation of a bubble state, suggesting that the thermodynamic path to reaching that state requires transient dynamics. X-ray imaging reveals that the bubbles have Bloch-type walls with random chirality and topology, indicating negligible chiral interactions at the garnet film thickness studied here. The robustness of thermal nucleation and the feasibility demonstrated here to image garnet-based devices by x-rays both in transmission geometry and with sensitivity to the domain wall chirality are critical steps to enabling the study of small spin textures and dynamics in perpendicularly magnetized thin-film garnets.

mms

DOI [BibTex]

DOI [BibTex]


{Real-space imaging of confined magnetic skyrmion tubes}
Real-space imaging of confined magnetic skyrmion tubes

Birch, M. T., Cortés-Ortuño, D., Turnbull, L. A., Wilson, M. N., Groß, F., Träger, N., Laurenson, A., Bukin, N., Moody, S. H., Weigand, M., Schütz, G., Popescu, H., Fan, R., Steadman, P., Verezhak, J. A. T., Balakrishnan, G., Loudon, J. C., Twitchett-Harrison, A. C., Hovorka, O., Fangohr, H., Ogrin, F., Gräfe, J., Hatton, P. D.

Nature Communications, 11, pages: 1726, 2020 (article)

Abstract
Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Current-induced dynamical tilting of chiral domain walls in curved microwires

Finizio, S., Wintz, S., Mayr, S., Huxtable, A. J., Langer, M., Bailey, J., Burnell, G., Marrows, C. H., Raabe, J.

Applied Physics Letters, 116(18), American Institute of Physics, Melville, NY, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Highly effective hydrogen isotope separation through dihydrogen bond on Cu(I)-exchanged zeolites well above liquid nitrogen temperature

Xiong, R., Zhang, L., Li, P., Luo, W., Tang, T., Ao, B., Sang, G., Chen, C., Yan, X., Chen, J., Hirscher, M.

Chemical Engineering Journal, 391, Elsevier, Lausanne, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Room temperature ferromagnetism driven by Ca-doped BiFeO3 multiferroic functional material

Marzouk, M., Hashem, H. M., Soltan, S., Ramadan, A. A.

{Journal of Materials Science: Materials in Electronics}, 31(7):5599-5607, Springer, Norwell, MA, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]

2019


Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors
Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors

Ionescu, A., Simmendinger, J., Bihler, M., Miksch, C., Fischer, P., Soltan, S., Schütz, G., Albrecht, J.

Supercond. Sci. and Tech., 33, pages: 015002, IOP, December 2019 (article)

Abstract
Magnetic imaging of superconductors typically requires a soft-magnetic material placed on top of the superconductor to probe local magnetic fields. For reasonable results the influence of the magnet onto the superconductor has to be small. Thin YBCO films with soft-magnetic coatings are investigated using SQUID magnetometry. Detailed measurements of the magnetic moment as a function of temperature, magnetic field and time have been performed for different heterostructures. It is found that the modification of the superconducting transport in these heterostructures strongly depends on the magnetic and structural properties of the soft-magnetic material. This effect is especially pronounced for an inhomogeneous coating consisting of ferromagnetic nanoparticles.

pf mms

link (url) DOI [BibTex]

2019


link (url) DOI [BibTex]


Life Improvement Science: A Manifesto
Life Improvement Science: A Manifesto

Lieder, F.

December 2019 (article) In revision

Abstract
Rapid technological advances present unprecedented opportunities for helping people thrive. This manifesto presents a road map for establishing a solid scientific foundation upon which those opportunities can be realized. It highlights fundamental open questions about the cognitive underpinnings of effective living and how they can be improved, supported, and augmented. These questions are at the core of my proposal for a new transdisciplinary research area called life improvement science. Recent advances have made these questions amenable to scientific rigor, and emerging approaches are paving the way towards practical strategies, clever interventions, and (intelligent) apps for empowering people to reach unprecedented levels of personal effectiveness and wellbeing.

re

Life improvement science: a manifesto DOI [BibTex]


no image
Doing More with Less: Meta-Reasoning and Meta-Learning in Humans and Machines

Griffiths, T. L., Callaway, F., Chang, M. B., Grant, E., Krueger, P. M., Lieder, F.

Current Opinion in Behavioral Sciences, 29, pages: 24-30, October 2019 (article)

Abstract
Artificial intelligence systems use an increasing amount of computation and data to solve very specific problems. By contrast, human minds solve a wide range of problems using a fixed amount of computation and limited experience. We identify two abilities that we see as crucial to this kind of general intelligence: meta-reasoning (deciding how to allocate computational resources) and meta-learning (modeling the learning environment to make better use of limited data). We summarize the relevant AI literature and relate the resulting ideas to recent work in psychology.

re

DOI [BibTex]

DOI [BibTex]


Cognitive Prostheses for Goal Achievement
Cognitive Prostheses for Goal Achievement

Lieder, F., Chen, O. X., Krueger, P. M., Griffiths, T. L.

Nature Human Behavior, 3, August 2019 (article)

Abstract
Procrastination and impulsivity take a significant toll on people’s lives and the economy at large. Both can result from the misalignment of an action's proximal rewards with its long-term value. Therefore, aligning immediate reward with long-term value could be a way to help people overcome motivational barriers and make better decisions. Previous research has shown that game elements, such as points, levels, and badges, can be used to motivate people and nudge their decisions on serious matters. Here, we develop a new approach to decision support that leveragesartificial intelligence and game elements to restructure challenging sequential decision problems in such a way that it becomes easier for people to take the right course of action. A series of four increasingly more realistic experiments suggests that this approach can enable people to make better decisions faster, procrastinate less, complete their work on time, and waste less time on unimportant tasks. These findings suggest that our method is a promising step towards developing cognitive prostheses that help people achieve their goals by enhancing their motivation and decision-making in everyday life.

re

DOI [BibTex]

DOI [BibTex]


Superior Magnetic Performance in FePt L1_0 Nanomaterials
Superior Magnetic Performance in FePt L1_0 Nanomaterials

Son, K., Ryu, G. H., Jeong, H., Fink, L., Merz, M., Nagel, P., Schuppler, S., Richter, G., Goering, E., Schütz, G.

Small, 15(1902353), July 2019 (article)

Abstract
The discovery of the high maximum energy product of 59 MGOe for NdFeB magnets is a breakthrough in the development of permanent magnets with a tremendous impact in many fields of technology. This value is still the world record, for 40 years. This work reports on a reliable and robust route to realize nearly perfectly ordered L1_0-phase FePt nanoparticles, leading to an unprecedented energy product of 80 MGOe at room temperature. Furthermore, with a 3 nm Au coverage, the magnetic polarization of these nanomagnets can be enhanced by 25% exceeding 1.8 T. This exceptional magnetization and anisotropy is confirmed by using multiple imaging and spectroscopic methods, which reveal highly consistent results. Due to the unprecedented huge energy product, this material can be envisaged as a new advanced basic magnetic component in modern micro and nanosized devices.

pf mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources

Lieder, F., Griffiths, T. L.

Behavioral and Brain Sciences, 43, E1, Febuary 2019 (article)

Abstract
Modeling human cognition is challenging because there are infinitely many mechanisms that can generate any given observation. Some researchers address this by constraining the hypothesis space through assumptions about what the human mind can and cannot do, while others constrain it through principles of rationality and adaptation. Recent work in economics, psychology, neuroscience, and linguistics has begun to integrate both approaches by augmenting rational models with cognitive constraints, incorporating rational principles into cognitive architectures, and applying optimality principles to understanding neural representations. We identify the rational use of limited resources as a unifying principle underlying these diverse approaches, expressing it in a new cognitive modeling paradigm called resource-rational analysis. The integration of rational principles with realistic cognitive constraints makes resource-rational analysis a promising framework for reverse-engineering cognitive mechanisms and representations. It has already shed new light on the debate about human rationality and can be leveraged to revisit classic questions of cognitive psychology within a principled computational framework. We demonstrate that resource-rational models can reconcile the mind's most impressive cognitive skills with people's ostensive irrationality. Resource-rational analysis also provides a new way to connect psychological theory more deeply with artificial intelligence, economics, neuroscience, and linguistics.

re

DOI [BibTex]

DOI [BibTex]


no image
Extracting the dynamic magnetic contrast in time-resolved X-ray transmission microscopy

Schaffers, T., Feggeler, T., Pile, S., Meckenstock, R., Buchner, M., Spoddig, D., Ney, V., Farle, M., Wende, H., Wintz, S., Weigand, M., Ohldag, H., Ollefs, K, Ney, A.

{Nanomaterials}, 9(7), MDPI, Basel, Schweiz, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Generation of switchable singular beams with dynamic metasurfaces

Yu, P., Li, J., Li, X., Schütz, G., Hirscher, M., Zhang, S., Liu, N.

{ACS Nano}, 13(6):7100-7106, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Piezo-electrical control of gyration dynamics of magnetic vortices

Filianina, M., Baldrati, L., Hajiri, T., Litzius, K., Foerster, M., Aballe, L., Kläui, M.

{Applied Physics Letters}, 115(6), American Institute of Physics, Melville, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Barely porous organic cages for hydrogen isotrope separation

Liu, M., Zhang, L., Little, M. A., Kapil, V., Ceriotti, M., Yang, S., Ding, L., Holden, D. L., Balderas-Xicohténcatl, R., He, D., Clowes, R., Chong, S. Y., Schütz, G., Chen, L., Hirscher, M., Cooper, A. I.

{Science}, 366(6465):613-620, American Association for the Advancement of Science, Washington, D.C., 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers

Simmendinger, J., Hänisch, J., Bihler, M., Ionescu, A. M., Weigand, M., Sieger, M., Hühne, R., Rijckaert, H., van Driessche, I., Schütz, G., Albrecht, J.

{New Journal of Physics}, 21, IOP Publishing, Bristol, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


{Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator}
Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator

Förster, J., Gräfe, J., Bailey, J., Finizio, S., Träger, N., Groß, F., Mayr, S., Stoll, H., Dubs, C., Surzhenko, O., Liebing, N., Woltersdorf, G., Raabe, J., Weigand, M., Schütz, G., Wintz, S.

{Physical Review B}, 100(21), American Physical Society, Woodbury, NY, 2019 (article)

Abstract
Spin-wave dynamics were studied in an extended thin film of single-crystalline yttrium iron garnet using time-resolved scanning transmission x-ray microscopy. A combination of mechanical grinding and focused ion beam milling has been utilized to achieve a soft x-ray transparent thickness of the underlying bulk gadolinium gallium garnet substrate. Damon-Eshbach type spin waves down to about 100 nm wavelength have been directly imaged in real space for varying frequencies and external magnetic fields. The dispersion relation extracted from the experimental data agreed well with theoretical predictions. A significant influence of the ion milling process on the local magnetic properties was not detected.

mms

DOI [BibTex]

DOI [BibTex]


{Nanoscale detection of spin wave deflection angles in permalloy}
Nanoscale detection of spin wave deflection angles in permalloy

Gross, F., Träger, N., Förster, J., Weigand, M., Schütz, G., Gräfe, J.

{Applied Physics Letters}, 114(1), American Institute of Physics, Melville, NY, 2019 (article)

Abstract
Magnonics is a potential candidate for beyond CMOS and neuromorphic computing technologies with advanced phase encoded logic. However, nanoscale imaging of spin waves with full phase and magnetization amplitude information is a challenge. We show a generalized scanning transmission x-ray microscopy platform to get a complete understanding of spin waves, including the k-vector, phase, and absolute magnetization deflection angle. As an example, this is demonstrated using a 50 nm thin permalloy film where we find a maximum deflection angle of 1.5° and good agreement with the k-vector dispersion previously reported in the literature. With a spatial resolution approximately ten times better than any other methods for spin wave imaging, x-ray microscopy opens a vast range of possibilities for the observation of spin waves and various magnetic structures.

mms

DOI [BibTex]

DOI [BibTex]


{gFORC: A graphics processing unit accelerated first-order reversal-curve calculator}
gFORC: A graphics processing unit accelerated first-order reversal-curve calculator

Groß, F., Martínez-García, J. C., Ilse, S. E., Schütz, G., Goering, E., Rivas, M., Gräfe, J.

{Journal of Applied Physics}, 126(16), AIP Publishing, New York, NY, 2019 (article)

Abstract
First-order reversal-curves have proven to be an indispensable characterization tool for physics as well as for geology. However, the conventional evaluation algorithm requires a lot of computational effort for a comparable easy task to overcome measurement noise. In this work, we present a new evaluation approach, which exploits the diversity of Fourier space to not only speed up the calculation by a factor of 1000 but also move away from the conventional smoothing factor toward real field resolution. By comparing the baseline resolution of the new and the old algorithm, we are able to deduce an analytical equation that converts the smoothing factor into field resolution, making the old and new algorithm comparable. We find excellent agreement not only for various systems of increasing complexity but also over a large range of smoothing factors. The achieved speedup enables us to calculate a large number of first-order reversal-curve diagrams with increasing smoothing factor allowing for an autocorrelation approach to find a hard criterion for the optimum smoothing factor. This previously computational prohibitive evaluation of first-order reversal-curves solves the problem of over- and undersmoothing by increasing general readability and preventing information destruction.

mms

DOI [BibTex]

DOI [BibTex]


no image
Spatial Continuity Effect vs. Spatial Contiguity Failure. Revising the Effects of Spatial Proximity Between Related and Unrelated Representations

Beege, M., Wirzberger, M., Nebel, S., Schneider, S., Schmidt, N., Rey, G. D.

Frontiers in Education, 4:86, 2019 (article)

Abstract
The split-attention effect refers to learning with related representations in multimedia. Spatial proximity and integration of these representations are crucial for learning processes. The influence of varying amounts of proximity between related and unrelated information has not yet been specified. In two experiments (N1 = 98; N2 = 85), spatial proximity between a pictorial presentation and text labels was manipulated (high vs. medium vs. low). Additionally, in experiment 1, a control group with separated picture and text presentation was implemented. The results revealed a significant effect of spatial proximity on learning performance. In contrast to previous studies, the medium condition leads to the highest transfer, and in experiment 2, the highest retention score. These results are interpreted considering cognitive load and instructional efficiency. Findings indicate that transfer efficiency is optimal at a medium distance between representations in experiment 1. Implications regarding the spatial contiguity principle and the spatial contiguity failure are discussed.

re

link (url) DOI [BibTex]


no image
Coordinated molecule-modulated magnetic phase with metamagnetism in metal-organic frameworks

Son, K., Kim, J. Y., Schütz, G., Kang, S. G., Moon, H. R., Oh, H.

{Inorganic Chemistry}, 58(14):8895-8899, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Scaling of intrinsic domain wall magnetoresistance with confinement in electromigrated nanocontacts

Reeve, R. M., Loescher, A., Kazemi, H., Dupé, B., Mawass, M., Winkler, T., Schönke, D., Miao, J., Litzius, K., Sedlmayr, N., Schneider, I., Sinova, J., Eggert, S., Kläui, M.

{Physical Review B}, 99(21), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths}
Coherent excitation of heterosymmetric spin waves with ultrashort wavelengths

Dieterle, G., Förster, J., Stoll, H., Semisalova, A. S., Finizio, S., Gangwar, A., Weigand, M., Noske, M., Fähnle, M., Bykova, I., Gräfe, J., Bozhko, D. A., Musiienko-Shmarova, H. Y., Tiberkevich, V., Slavin, A. N., Back, C. H., Raabe, J., Schütz, G., Wintz, S.

{Physical Review Letters}, 122(11), American Physical Society, Woodbury, N.Y., 2019 (article)

Abstract
In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturization potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagating spin waves and their excitation over a wide range of frequencies. By further analysis, we found that these waves exhibit a heterosymmetric mode profile, involving regions with anti-Larmor precession sense and purely linear magnetic oscillation. In particular, this mode profile consists of dynamic vortices with laterally alternating helicity, leading to a partial magnetic flux closure over the film thickness, which is explained by a strong and unexpected mode hybridization. This spin-wave phenomenon observed is a general effect inherent to the dynamics of sufficiently thick ferromagnetic single layer films, independent of the specific excitation method employed.

mms

DOI [BibTex]

DOI [BibTex]


Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals
Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals

Lisiecki, F., Rychły, J., Kuświk, P., Głowiński, H., Kłos, J. W., Groß, F., Bykova, I., Weigand, M., Zelent, M., Goering, E. J., Schütz, G., Gubbiotti, G., Krawczyk, M., Stobiecki, F., Dubowik, J., Gräfe, J.

Physical Review Applied, 11, pages: 054003, 2019 (article)

Abstract
Magnonic crystals are systems that can be used to design and tune the dynamic properties of magnetization. Here, we focus on one-dimensional Fibonacci magnonic quasicrystals. We confirm the existence of collective spin waves propagating through the structure as well as dispersionless modes; the reprogammability of the resonance frequencies, dependent on the magnetization order; and dynamic spin-wave interactions. With the fundamental understanding of these properties, we lay a foundation for the scalable and advanced design of spin-wave band structures for spintronic, microwave, and magnonic applications.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Structural and magnetic properties of FePt-Tb alloy thin films

Schmidt, N. Y., Laureti, S., Radu, F., Ryll, H., Luo, C., d\textquotesingleAcapito, F., Tripathi, S., Goering, E., Weller, D., Albrecht, M.

{Physical Review B}, 100(6), American Physical Society, Woodbury, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Tunable perpendicular exchange bias in oxide heterostructures

Kim, G., Khaydukov, Y., Bluschke, M., Suyolcu, Y. E., Christiani, G., Son, K., Dietl, C., Keller, T., Weschke, E., van Aken, P. A., Logvenov, G., Keimer, B.

{Physical Review Materials}, 3(8), American Physical Society, College Park, MD, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]