Header logo is



no image
Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am ics

PDF [BibTex]

PDF [BibTex]


no image
Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke

Castaneda, S., Katiyar, P., Russo, F., Calaminus, C., Disselhorst, J. A., Ziemann, U., Kohlhofer, U., Quintanilla-Martinez, L., Poli, S., Pichler, B. J.

World Molecular Imaging Conference, 2016 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Multi-view learning on multiparametric PET/MRI quantifies intratumoral heterogeneity and determines therapy efficacy

Katiyar, P., Divine, M. R., Kohlhofer, U., Quintanilla-Martinez, L., Siegemund, M., Pfizenmaier, K., Kontermann, R., Pichler, B. J., Disselhorst, J. A.

World Molecular Imaging Conference, 2016 (talk)

ei

link (url) [BibTex]

link (url) [BibTex]

1994


no image
View-based cognitive mapping and path planning

Schölkopf, B., Mallot, H.

(7), Max Planck Institute for Biological Cybernetics Tübingen, November 1994, This technical report has also been published elsewhere (techreport)

Abstract
We present a scheme for learning a cognitive map of a maze from a sequence of views and movement decisions. The scheme is based on an intermediate representation called the view graph. We show that this representation carries sufficient information to reconstruct the topological and directional structure of the maze. Moreover, we present a neural network that learns the view graph during a random exploration of the maze. We use a unsupervised competitive learning rule which translates temporal sequence (rather than similarity) of views into connectedness in the network. The network uses its knowledge of the topological and directional structure of the maze to generate expectations about which views are likely to be perceived next, improving the view recognition performance. We provide an additional mechanism which uses the map to find paths between arbitrary points of the previously explored environment. The results are compared to findings of behavioural neuroscience.

ei

[BibTex]

1994


[BibTex]